146 resultados para Blacks -- History
Resumo:
We summarize the life history characteristics of silvergray rockfish (Sebastes brevispinis) based on commercial fishery data and biological samples from British Columbia waters. Silvergray rockfish occupy bottom depths of 100−300 m near the edge of the continental shelf. Within that range, they appear to make a seasonal movement from 100−200 m in late summer to 180−280 m in late winter. Maximum observed age in the data set was 81 and 82 years for females and males, respectively. Maximum length and round weight was 73 cm and 5032 g for females and 70 cm and 3430 g for males. The peak period of mating lasted from December to February and parturition was concentrated from May to July. Both sexes are 50% mature by 9 or 10 years and 90% are mature by age 16 for females and age 13 years for males. Fecundity was estimated from one sample of 132 females and ranged from 181,000 to 1,917,000 oocytes and there was no evidence of batch spawning. Infection by the copepod parasite Sarcotaces arcticus appears to be associated with lower fecundity. Sexual maturation appears to precede recruitment to the trawl fishery; thus spawning stock biomass per recruit analysis (SSB/R) indicates that a F50% harvest target would correspond to an F of 0.072, 20% greater than M (0.06). Fishery samples may bias estimates of age at maturity but a published meta-data analysis, in conjunction with fecundity data, independently supports an early age of maturity in relation to recruitment. Although delayed recruitment to the fishery may provide more resilience to exploitation, managers may wish to forego maximizing economic yield from this species. Silvergray rockfish are a relatively minor but unavoidable part of the multiple species trawl catch. Incorrectly “testing” the resilience of one species may cause it to be the weakest member of the specie
Resumo:
Morphological development of the larvae and small juveniles of estuary perch (Macquaria colonorum) (17 specimens, 4.8−13.5 mm body length) and Australian bass (M. novemaculeata) (38 specimens, 3.3−14.1 mm) (Family Percichthyidae) is described from channel-net and beach-seine collections of both species, and from reared larvae of M. novemaculeata. The larvae of both are characterized by having 24−25 myomeres, a large triangular gut (54−67% of BL) in postflexion larvae, small spines on the preopercle and interopercle, a smooth supraocular ridge, a small to moderate gap between the anus and the origin of the anal fin, and distinctive pigment patterns. The two species can be distinguished most easily by the different distribution of their melanophores. The adults spawn in estuaries and larvae are presumed to remain in estuaries before migrating to adult freshwater habitat. However, larvae of both species were collected as they entered a central New South Wales estuary from the ocean on flood tides; such transport may have consequences for the dispersal of larvae among estuaries. Larval morphology and published genetic evidence supports a reconsideration of the generic arrangement of the four species currently placed in the genus Macquaria.
Resumo:
The Argentine sandperch Pseudopercis semifasciata (Pinguipedidae) sustains an important commercial and recreational fishery in the northern Patagonian gulfs of Argentina. We describe the morphological features of larvae and posttransition juveniles of P. semifasciata and analyze the abundance and distribution of early life-history stages obtained from 19 research cruises conducted on the Argentine shelf between 1978 and 2001. Pseudopercis semifasciata larvae were distinguished from other larvae by the modal number of myomeres (between 36 and 38), their elongated body, the size of their gut, and by osteological features of the neuro- and branchiocranium. Pseudopercis semifasciata and Pinguipes brasilianus (the other sympatric species of pinguipedid fishes) posttransition juveniles were distinguished by their head shape, pigmentation pattern, and by the number of spines of the dorsal fin (five in P. semifasciata and seven in P. brasilianus). The abundance and distribution of P. semifasciata at early stages indicate the existence of at least three offshore reproductive grounds between 42−43°S, 43−44°S, and 44−45°S, and a delayed spawning pulse in the southern stocks.
Resumo:
Oysters, Crassostrea virginica, and softshell clams, Mya arenaria, along the Massachusetts coast were harvested by European colonists beginning in the 1600’s. By the 1700’s, official Commonwealth rules were established to regulate their harvests. In the final quarter of the 1800’s, commercial fishermen began harvesting northern quahogs, Mercenaria mercenaria, and northern bay scallops, Argopecten irradians irradians, and regulations established by the Massachusetts Legislature were applied to their harvests also. Constables (also termed wardens), whose salaries were paid by the local towns, enforced the regulations, which centered on restricting harvests to certain seasons, preventing seed from being taken, and personal daily limits on harvests. In 1933, the Massachusetts Legislature turned over shellfisheries management to individual towns. Local constables (wardens) enforced the rules. In the 1970’s, the Massachusetts Shellfish Officers Association was formed, and was officially incorporated in 2000, to help the constables deal with increasing environmental problems in estuaries where fishermen harvest mollusks. The constables’ stewardship of the molluscan resources and the estuarine environments and promotion of the fisheries has become increasingly complex.
Resumo:
Thirteen bottom trawl surveys conducted in Alaska waters for red king crab, Paralithodes camtschaticus, during 1940–61 are largely forgotten today even though they helped define our current knowledge of this resource. Government publications on six exploratory surveys (1940–49, 1957) included sample locations and some catch composition data, but these documents are rarely referenced. Only brief summaries of the other seven annual (1955–61) grid-patterned trawl surveys from the eastern Bering Sea were published. Although there have been interruptions in sampling and some changes in the trawl survey methods, a version of this grid-patterned survey continues through the present day, making it one of the oldest bottom-trawl surveys in U.S. waters. Unfortunately, many of the specific findings made during these early efforts have been lost to the research community. Here, we report on the methods, results, and significance of these early surveys, which were collated from published reports and the unpublished original data sheets so that researchers might begin incorporating this information into stock assessments, ecosystem trend analyses, and perhaps even revise the baseline population distribution and abundance estimates.
Resumo:
This is a broad historical overview of the bay scallop, Argopecten irradians, fishery on the East and Gulf Coasts of North America (Fig. 1). For a little over a century, from about the mid 1870’s to the mid 1980’s, bay scallops supported large commercial fisheries mainly in the U.S. states of Massachusetts, New York, and North Carolina and on smaller scales in the states in between and in western Florida. In these states, the annual harvests and dollar value of bay scallops were far smaller than those of the other important commercial mollusks, the eastern oysters, Crassostrea virginica, and northern quahogs, Mercenaria mercenaria, but they were higher than those of softshell clams, Mya arenaria (Table 1). The fishery had considerable economic importance in the states’ coastal towns, because bay scallops are a high-value product and the fishery was active during the winter months when the economies in most towns were otherwise slow. The scallops also had cultural importance as a special food, an ornament owing to its pretty shell design, and an interesting biological component of
Resumo:
This article covers the biology and the history of the bay scallop habitats and fishery from Massachusetts to North Carolina. The scallop species that ranges from Massachusetts to New York is Argopecten irradians irradians. In New Jersey, this species grades into A. i. concentricus, which then ranges from Maryland though North Carolina. Bay scallops inhabit broad, shallow bays usually containing eelgrass meadows, an important component in their habitat. Eelgrass appears to be a factor in the production of scallop larvae and also the protection of juveniles, especially, from predation. Bay scallops spawn during the warm months and live for 18–30 months. Only two generations of scallops are present at any time. The abundances of each vary widely among bays and years. Scallops were harvested along with other mollusks on a small scale by Native Americans. During most of the 1800’s, people of European descent gathered them at wading depths or from beaches where storms had washed them ashore. Scallop shells were also and continue to be commonly used in ornaments. Some fishing for bay scallops began in the 1850’s and 1860’s, when the A-frame dredge became available and markets were being developed for the large, white, tasty scallop adductor muscles, and by the 1870’s commercial-scale fishing was underway. This has always been a cold-season fishery: scallops achieve full size by late fall, and the eyes or hearts (adductor muscles) remain preserved in the cold weather while enroute by trains and trucks to city markets. The first boats used were sailing catboats and sloops in New England and New York. To a lesser extent, scallops probably were also harvested by using push nets, picking them up with scoop nets, and anchor-roading. In the 1910’s and 1920’s, the sails on catboats were replaced with gasoline engines. By the mid 1940’s, outboard motors became more available and with them the numbers of fishermen increased. The increases consisted of parttimers who took leaves of 2–4 weeks from their regular jobs to earn extra money. In the years when scallops were abundant on local beds, the fishery employed as many as 10–50% of the towns’ workforces for a month or two. As scallops are a higher-priced commodity, the fishery could bring a substantial amount of money into the local economies. Massachusetts was the leading state in scallop landings. In the early 1980’s, its annual landings averaged about 190,000 bu/yr, while New York and North Carolina each landed about 45,000 bu/yr. Landings in the other states in earlier years were much smaller than in these three states. Bay scallop landings from Massachusetts to New York have fallen sharply since 1985, when a picoplankton, termed “brown tide,” bloomed densely and killed most scallops as well as extensive meadows of eelgrass. The landings have remained low, large meadows of eelgrass have declined in size, apparently the species of phytoplankton the scallops use as food has changed in composition and in seasonal abundance, and the abundances of predators have increased. The North Carolina landings have fallen since cownose rays, Rhinoptera bonsais, became abundant and consumed most scallops every year before the fishermen could harvest them. The only areas where the scallop fishery remains consistently viable, though smaller by 60–70%, are Martha’s Vineyard, Nantucket, Mass., and inside the coastal inlets in southwestern Long Island, N.Y.
Resumo:
Sand sole, Psettichthys melanostictus, is a small but important part of the west coast groundfish fishery. It has never been assessed and there is a limited amount of biological data for the species. We provide the first estimates of age and growth for California populations and compare them with studies from other areas. We found that sand sole is a rapidly growing species which may show a strong latitudinal gradient in growth rate. We also found evidence of a recent, strong cohortrelated shift in the sex ratio of the population towards fewer females. In addition we examined data from the Washington, Oregon, and California commercial fishery to make an initial determination of population status. We found that catch per unit of effort in commercial trawls experienced a decline over time but has rebounded in recent years, except central California (the southern part of its commercial range), where the decline has not reversed.
Resumo:
In the 1500’s, the waters of Venezuela and to a lesser extent Colombia produced more natural pearls than any place ever produced in the world in any succeeding century. Atlantic pearl-oysters, Pinctata imbricata Röding 1798, were harvested almost entirely by divers. The pearls from them were exported to Spain and other European countries. By the end of the 1500’s, the pearl oysters had become much scarcer, and little harvesting took place during the 1600’s and 1700’s. Harvesting began to accelerate slowly in the mid 1800’s and has since continued but at a much lower rate than in the 1500’s. The harvesting methods have been hand collecting by divers until the early 1960’s, dredging from the 1500’s to the present, and hardhat diving from 1912 to the early 1960’s. Since the mid 1900’s, Japan and other countries of the western Pacific rim have inundated world markets with cultured pearls that are of better quality and are cheaper than natural pearls, and the marketing of natural pearls has nearly ended. The pearl oyster fishery in Colombia ended in the 1940’s, but it has continued in Venezuela with the fishermen selling the meats to support themselves; previously most meats had been discarded. A small quantity of pearls is now taken, and the fishery, which comprised about 3,000 fishermen in 1947, comprised about 300 in 2002.
Resumo:
The northern quahog, Mercenaria mercenaria, ranges along the Atlantic Coast of North America from the Canadian Maritimes to Florida, while the southern quahog, M. campechiensis, ranges mostly from Florida to southern Mexico. The northern quahog was fished by native North Americans during prehistoric periods. They used the meats as food and the shells as scrapers and as utensils. The European colonists copied the Indians treading method, and they also used short rakes for harvesting quahogs. The Indians of southern New England and Long Island, N.Y., made wampum from quahog shells, used it for ornaments and sold it to the colonists, who, in turn, traded it to other Indians for furs. During the late 1600’s, 1700’s, and 1800’s, wampum was made in small factories for eventual trading with Indians farther west for furs. The quahoging industry has provided people in many coastal communities with a means of earning a livelihood and has given consumers a tasty, wholesome food whether eaten raw, steamed, cooked in chowders, or as stuffed quahogs. More than a dozen methods and types of gear have been used in the last two centuries for harvesting quahogs. They include treading and using various types of rakes and dredges, both of which have undergone continuous improvements in design. Modern dredges are equipped with hydraulic jets and one type has an escalator to bring the quahogs continuously to the boats. In the early 1900’s, most provinces and states established regulations to conserve and maximize yields of their quahog stocks. They include a minimum size, now almost universally a 38-mm shell width, and can include gear limitations and daily quotas. The United States produces far more quahogs than either Canada or Mexico. The leading producer in Canada is Prince Edward Island. In the United States, New York, New Jersey, and Rhode Island lead in quahog production in the north, while Virginia and North Carolina lead in the south. Connecticut and Florida were large producers in the 1990’s. The State of Tabasco leads in Mexican production. In the northeastern United States, the bays with large openings, and thus large exchanges of bay waters with ocean waters, have much larger stocks of quahogs and fisheries than bays with small openings and water exchanges. Quahog stocks in certified beds have been enhanced by transplanting stocks to them from stocks in uncertified waters and by planting seed grown in hatcheries, which grew in number from Massachusetts to Florida in the 1980’s and 1990’s.
Resumo:
Aboriginal Australians consumed oysters before settlement by Europeans as shown by the large number of kitchen middens along Australia's coast. Flat oysters, Ostrea angasi, were consumed in southeastern Australia, whereas both flat and Sydney rock oysters, Saccostrea glomerata, are found in kitchen middens in southern New South Wales (NSW), but only Sydney rock oysters are found in northern NSW and southern Queensland. Oyster fisheries began with the exploitation of dredge beds, for the use of oyster shell for lime production and oyster meat for consumption. These natural oyster beds were nealy all exhausted by the late 1800's, and they have not recovered. Oyster farming, one of the oldest aquaculture industries in Australia, began as the oyster fisheries declined in the late 1800's. Early attempts at farming flat oysters in Tasmania, Victoria, and South Australia, which started in the 1880's, were abandoned in the 1890's. However, a thriving Sydney rock oyster industry developed from primitive beginnings in NSW in the 1870's. Sydney rock oysters are farmed in NSW, southern Queensland, and at Albany, Western Australia (WA). Pacific oysters, Crassostrea gigas, are produced in Tasmania, South Australia, and Port Stephens, NSW. FLant oysters currently are farmed only in NSW, and there is also some small-scale harvesting of tropical species, the coarl rock or milky oyster, S. cucullata, and th black-lip oyster, Striostrea mytiloides, in northern Queensland. Despite intra- and interstate rivalries, oyster farmers are gradually realizing that they are all part of one industry, and this is reflected by the establishment of the national Australian Shellfish Quality Assuarance Program and the transfer of farming technology between states. Australia's oyster harvests have remained relatively stable since Sydney rock oyster production peaked in the mid 1970's at 13 million dozen. By the end of the 1990's this had stabilized at around 8 million dozen, and Pacific oyster production reached a total of 6.5 million dozen from Tasmania, South Australia, and Port Stephens, a total of 14.5 million dozen oysters for the whole country. This small increase in production during a time of substantial human population growth shows a smaller per capita consumption and a declining use of oysters as a "side-dish."
Resumo:
Belugas, Delphinapterus leucas, in Cook Inlet, Alaska, represent a unique and isolated marine mammal population that has been hunted for a variety of purposes since prehistoric times. Archeological studies have shown that both Alutiiq Eskimos and Dena'ina Atabaskan Indians have long utilized many marine resources in Cook Inlet, including belugas. Over the past century, commercial whaling and sport hunting also occurred periodically in Cook Inlet prior to the Marine Mammal Protection Act of 1972 (MMPA). During the 1990's, the hunting mortality by Alaska Natives apparently increased to 40-70 whales per year, which led to the decling of this stock and its subsequent designation in 2000 as depleted under the MMPA. Concerns about the decline of the Cook Inlet stock resulted in a voluntary suspension of the subsistenc hunt by Alaska Natives in 1999. The difficulty in obtaining accurate estimates for the harvest of these whales is due to the inability to identify all of the hunters and, in turn, the size of the harvest. Attempts to reconstruct harvest records based on hunters' recollections and interviews from only a few households have been subject to a wide degree of speculation. To adequately monitor the beluga harvest, the National Marine Fisheries Service established marking and reporting regulations in October 1999. These rules require that Alaska Natives who hunt belugas in Cook Inlet must collect the lowere left jaw from harvested whales and complete a report that includes date and time of the harvest, coloration of the whale, harvest location, and method of harvest. The MMPA was amended in 2000 to require a cooperative agreement between the National Marine Fisheries Service and Alaska Native organizations before hunting could be resumed.
Resumo:
At her launch on 19 October 1882 in Wilmington, Del., the Albatross was the world’s first large deep-sea oceanographic and fisheries research vessel, and she would go on to have a distinguished 40-year career, ranging from the north Atlantic Ocean to the Gulf of Mexico, around Cape Horn in 1887–88, and into the North Pacific. By 1908, Deputy Fish Commissioner Hugh M. Smith reported that “The Albatross has contributed more to the knowledge of marine biology than has any other vessel.” And, of course, her career continued for another 13 years, being decommissioned in late 1921, serving later as a training vessel for nautical cadets, and disappearing from the records in Hamburg, Germany, in late 1928.
Resumo:
Spencer Fullerton Baird (Fig. 1), a noted systematic zoologist and builder of scientific institutions in 19th century America, persuaded the U.S. Congress to establish the United States Commission of Fish and Fisheries1 in March 1871. At that time, Baird was Assistant Secretary of the Smithsonian Institution. Following the death of Joseph Henry in 1878, he became head of the institution, a position he held until his own demise in 1887. In addition to his many duties as a Smithsonian official, including his prominent role in developing the Smithsonian’s Federally funded National Museum as the repository for governmental scientific collections, Baird directed the Fish Commission from 1871 until 1887. The Fish Commission’s original mission was to determine the reasons and remedies for the apparent decline of American fisheries off southern New England as well as other parts of the United States. In 1872, Congress further directed the Commission to begin a large fish hatching program aimed at increasing the supply of American food f
Resumo:
This study, part of a broader investigation of the history of exploitation of right whales, Balaena glacialis, in the western North Atlantic, emphasizes U.S. shore whaling from Maine to Delaware (from lat. 45°N to 38°30'N) in the period 1620–1924. Our broader study of the entire catch history is intended to provide an empirical basis for assessing past distribution and abundance of this whale population. Shore whaling may have begun at Cape Cod, Mass., in the 1620’s or 1630’s; it was certainly underway there by 1668. Right whale catches in New England waters peaked before 1725, and shore whaling at Cape Cod, Martha’s Vineyard, and Nantucket continued to decline through the rest of the 18th century. Right whales continued to be taken opportunistically in Massachusetts, however, until the early 20th century. They were hunted in Narragansett Bay, R.I., as early as 1662, and desultory whaling continued in Rhode Island until at least 1828. Shore whaling in Connecticut may have begun in the middle 1600’s, continuing there until at least 1718. Long Island shore whaling spanned the period 1650–1924. From its Dutch origins in the 1630’s, a persistent shore whaling enterprise developed in Delaware Bay and along the New Jersey shore. Although this activity was most profi table in New Jersey in the early 1700’s, it continued there until at least the 1820’s. Whaling in all areas of the northeastern United States was seasonal, with most catches in the winter and spring. Historically, right whales appear to have been essentially absent from coastal waters south of Maine during the summer and autumn. Based on documented references to specific whale kills, about 750–950 right whales were taken between Maine and Delaware, from 1620 to 1924. Using production statistics in British customs records, the estimated total secured catch of right whales in New England, New York, and Pennsylvania between 1696 and 1734 was 3,839 whales based on oil and 2,049 based on baleen. After adjusting these totals for hunting loss (loss-rate correction factor = 1.2), we estimate that 4,607 (oil) or 2,459 (baleen) right whales were removed from the stock in this region during the 38-year period 1696–1734. A cumulative catch estimate of the stock’s size in 1724 is 1,100–1,200. Although recent evidence of occurrence and movements suggests that right whales continue to use their traditional migratory corridor along the U.S. east coast, the catch history indicates that this stock was much larger in the 1600’s and early 1700’s than it is today. Right whale hunting in the eastern United States ended by the early 1900’s, and the species has been protected throughout the North Atlantic since the mid 1930’s. Among the possible reasons for the relatively slow stock recovery are: the very small number of whales that survived the whaling era to become founders, a decline in environmental carrying capacity, and, especially in recent decades, mortality from ship strikes and entanglement in fishing gear.