159 resultados para Atlantic Coast (U.S.)
Resumo:
An observer program of the shark drift gillnet fishery off the Atlantic coast of Florida and Georgia was begun in 1993 to define the fishery and estimate bycatch including bottlenose dolphin, Tursiops truncatus, and sea turtles. Boats in the fishery were 12.2-19.8 m long. Nets used were 275-1,800 m long and 3.2-4.1 m deep. Stretched-mesh sizes used were 12.7-29.9 cm. Fishing trips were usually <18 h and occurred within 30 n.mi. of port. Fishing with an observer aboard occurred between Savannah, Ga., and Jacksonville, Fla., and off Cape Canaveral, Fla. Nets were set at least 3 n.mi. offshore. Numbers of boats in the fishery increased from 5 in 1993 to 11 in 1995, but total trips decreased from 185 in 1994 to 149 in 1995. During 1993-95, 48 observer trips were completed and 52 net sets were observed. No marine mammals were caught and two loggerhead turtles, Caretta caretta, were caught and released alive. A total of 9,270 animals (12 shark, 21 teleost, 4 ray, and 1 sea turtle species) were captured. Blacknose, Carcharhinus acronotus; Atlantic sharpnose, Rhizoprionodon terraenovae; and blacktip shark, C. limbatus), were the dominant sharks caught. King mackerel, Scomberomorus cavalIa; little tunny, Euthynnus alleteratus; and cownose ray, Rhinoptera bonasus, were the dominant bycatch species. About 8.4% of the total catch was bycatch. Of the totals, 9.4% of the sharks and 37.3% ofthe bycatch were discarded.
Resumo:
This paper is based on an attempt to assemble the existing knowledge of the silverside, Menidia menidia, and to contribute to what is known about the life history of this species. A vast amount of work is needed on the ecological relationships between the food fish and the forage fish. One of the most important forage fishes on the Atlantic Coast is the silverside. To understand the inter-relationships between the food fish and the forage fish it is necessary first to understand the life histories of both. For this reason it is important that the life history of this species be studied.
Resumo:
In recent years, increasing commercial landings of horseshoe crabs (Limulus polyphemus) along the Atlantic coast of the United States have raised concerns that the present resource is in decline and insufficient to support the needs of its user groups. These concerns have led the Atlantic States Marine Fisheries Commission (ASMFC) to implement a fishery management plan to regulate the harvest (ASMFC1). In order to properly manage any species, specific management goals and objectives must be established, and these goals depend on the resource users involved (Quinn and Deriso, 1999). Horseshoe crabs present a distinct resource management challenge because they are important to a diverse set of users (Berkson and Shuster, 1999).
Resumo:
A total of 1006 king mackerel (Scomberomorus cavalla) representing 20 discrete samples collected between 1996 and 1998 along the east (Atlantic) and west (Gulf) coasts of Florida and the Florida Keys were assayed for allelic variation at seven nuclear-encoded microsatellites. No significant deviations from Hardy-Weinberg equilibrium expectations were found for six of the microsatellites, and genotypes at all microsatellites were independent. Allele distributions at each microsatellite were independent of sex and age of individuals. Homogeneity tests of spatial distributions of alleles at the microsatellites revealed two weakly divergent “genetic” subpopulations or stocks of king mackerel in Florida waters—one along the Atlantic coast and one along the Gulf coast. Homogeneity tests of allele distributions when samples were pooled along seasonal (temporal) boundaries, consistent with the temporal boundaries used currently for stock assessment and allocation of the king mackerel resource, were nonsignificant. The degree of genetic divergence between the two “genetic” stocks was small: on average, only 0.19% of the total genetic variance across all samples assayed occurred between the two regions. Cluster analysis, assignment tests, and spatial autocorrelation analysis did not generate patterns that were consistent with either geographic or spatial-temporal boundaries. King mackerel sampled from the Florida Keys could not be assigned unequivocally to either “genetic” stock. The genetic data were not consistent with current spatial-temporal boundaries employed in stock assessment and allocation of the king mackerel resource. The genetic differences between king mackerel in the Atlantic versus those in the Gulf most likely stem from reduced gene flow (migration) between the Atlantic and Gulf in relation to gene flow (migration) along the Atlantic and Gulf coasts of peninsular Florida. This difference is consistent with findings for other marine fishes where data indicate that the southern Florida peninsula serves (or has served) as a biogeographic boundary.
Resumo:
The U.S. East Coast pelagic longline fishery has a history of interactions with marine mammals, where animals are hooked and entangled in longline gear. Pilot whales (Globicephala spp.) and Risso’s dolphin (Grampus griseus) are the primary species that interact with longline gear. Logistic regression was used to assess the environmental and gear characteristics that influence interaction rates. Pilot whale inter-actions were correlated with warm water temperatures, proximity to the shelf break, mainline lengths greater than 20 nautical miles, and damage to swordfish catch. Similarly, Risso’s dolphin interactions were correlated with geographic location, proximity the shelf break, the length of the mainline, and bait type. The incidental bycatch of marine mammals is likely associated with depredation of the commercial catch and is increased by the overlap between marine mammal and target species habitats. Altering gear characteristics and fishery practices may mitigate incidental bycatch and reduce economic losses due to depredation.
Resumo:
Billfish movements relative to the International Commission for the Conservation of Atlantic Tunas management areas, as well as U.S. domestic data collection areas within the western North Atlantic basin, were investigated with mark-recapture data from 769 blue marlin, Makaira nigricans, 961 white marlin, Tetrapturus albidus, and 1,801 sailfish, Istiophorus platypterus. Linear displacement between release and recapture locations ranged from zero (all species) to 15,744 km (mean 575, median 119, SE 44) for blue marlin, 6,523 km (mean 719, median 216, SE 33) for white marlin, and 3,845 km (mean 294, median 98, SE 13) for sailfish. In total, 2,824 (80.0%) billfish were recaptured in the same management area of release. Days at liberty ranged from zero (all species) to 4,591 (mean 619, median 409, SE 24) for blue marlin, 5,488 (mean 692, median 448, SE 22) for white marlin, and 6,568 (mean 404, median 320, SE 11) for sailfish. The proportions (per species) of visits were highest in the Caribbean area for blue marlin and white marlin, and the Florida East Coast area for sailfish. Blue marlin and sailfish were nearly identical when comparing the percent of individuals vs. the number of areas visited. Overall, white marlin visited more areas than either blue marlin or sailfish. Seasonality was evident for all species, with overall results generally reflecting the efforts of the catch and release recreational fishing sector, particularly in the western North Atlantic. This information may be practical in reducing the uncertainties in billfish stock assessments and may offer valuable insight into management consideration of time-area closure regulations to reduce bycatch mortality of Atlantic billfishes.
Resumo:
Gravid Atlantic menhaden, Brevoortia tyrannus, are available along the central coast of North Carolina during the fall and are harvested by the purse-seine fleet from the port of Beaufort. Virtually all of the catch, sexually immature fish included, is reduces to fish meal, fish oil, and fish solubles; however, minor quantities of roe from ripening female menhaden are extracted for local consupmtion. Routine and selective port sampling information was used to characterize the seasonal and biostatistical nautre of the roe menhaden catches at Beaufort. Fishermen recognize two size classes of roe Atlantic menhaden: "forerunners," which are usually the smallest and earliest adult menhaden encountered in the Fall Fishery, and "mammy shad," which are the largest menhaden harvested and produce the greatest roe yields. Roe is extracted from femal fish at various points along the reduction process stream and by several techniques. Vessel cremen and factory personnel extract menhaden roe for personal and local consumption. Undetermined quantities of menhaden roe are channeled into local retail seafood markets. Wholesale prices are about $20 per gallon of roe, while retail prices are about $5 per pound. Carteret County, North Carolina, is probably the only area on the U.S. Atlantic and Gulf coasts where menhaden roe is sold in retail seafood markets. The potential of extracting menhaden roe for foreign markets is discussed
Resumo:
Long-term trends in the abundance and distribution of several pinniped species and commercially important fisheries of New England and the contiguous U.S. west coast are reviewed, and their actual and potential interactions discussed. Emphasis is on biological interactions or competition. The pinnipeds include the western North Atlantic stock of harbor seals, Phoca vitulina concolor; western North Atlantic gray seals, Halochoerus grypus; the U.S. stock of California sea lions, Zalophus californianus californianus; the eastern stock of Steller sea lions, Eumetopias jubatus; and Pacific harbor seals, Phoca vitulina richardii. Fisheries included are those for Atlantic cod, Gadus morhua; silver hake, Merluccius bilinearis; Atlantic herring, Clupea harengus; the coastal stock of Pacific whiting, Merluccius productus; market squid, Loligo opalescens; northern anchovy, Engraulis mordax; Pacific her-ring, Clupea pallasi; and Pacific sardine, Sardinops sagax. Most of these pinniped populations have grown exponentially since passage of the U.S. Marine Mammal Protection Act in 1972. They exploit a broad prey assemblage that includes several commercially valuable species. Direct competition with fisheries is therefore possible, as is competition for the prey of commercially valuable fish. The expanding pinniped populations, fluctuations in commercial fish biomass, and level of exploitation by the fisheries may affect this potential for competition. Concerns over pinnipeds impacting fisheries (especially those with localized spawning stocks or at low biomass levels) are more prevalent than concerns over fisheries’ impacts on pinnipeds. This review provides a framework to further evaluate potential biological interactions between these pinniped populations and the commercial fisheries with which they occur.
Resumo:
Logbook set and trip summary data (containing catch and cost information, respectively) collected by NOAA’s National Marine Fisheries Service (NMFS) were analyzed for U.S. pelagic longline vessels that participated in Atlantic fisheries in 1996. These data were augmented with vessel information from the U.S. Coast Guard. Mean fish weights and ex-vessel prices from NMFS observers and licensed seafood dealers, respectively, were used to estimate gross revenues. Comparisons revealed that net returns varied substantially by vessel size and fishing behavior (i.e. sets per trip, fishing location, season, and swordfish targeting). While the calculated economic effects of proposed regulations will depend on the descriptive statistic chosen for analysis, which itself depends on the type of analysis being conducted, results show that considering heterogeneity within this fleet can have a significant effect on predicted economic consequences.
Resumo:
Lionfish (Pterois volitans/miles complex) are venomous coral reef fishes from the Indian and western Pacific oceans that are now found in the western Atlantic Ocean. Adult lionfish have been observed from Miami, Florida to Cape Hatteras, North Carolina, and juvenile lionfish have been observed off North Carolina, New York, and Bermuda. The large number of adults observed and the occurrence of juveniles indicate that lionfish are established and reproducing along the southeast United States coast. Introductions of marine species occur in many ways. Ballast water discharge, a very common method of introduction for marine invertebrates, is responsible for many freshwater fish introductions. In contrast, most marine fish introductions result from intentional stocking for fishery purposes. Lionfish, however, likely were introduced via unintentional or intentional aquarium releases, and the introduction of lionfish into United States waters should lead to an assessment of the threat posed by the aquarium trade as a vector for fish introductions. Currently, no management actions are being taken to limit the effect of lionfish on the southeast United States continental shelf ecosystem. Further, only limited funds have been made available for research. Nevertheless, the extent of the introduction has been documented and a forecast of the maximum potential spread of lionfish is being developed. Under a scenario of no management actions and limited research, three predictions are made: ● With no action, the lionfish population will continue to grow along the southeast United States shelf. ● Effects on the marine ecosystem of the southeast United States will become more noticeable as the lionfish population grows. ● There will be incidents of lionfish envenomations of divers and/or fishers along the east coast of the United States. Removing lionfish from the southeast United States continental shelf ecosystem would be expensive and likely impossible. A bounty could be established that would encourage the removal of fish and provide specimens for research. However, the bounty would need to be lower than the price of fish in the aquarium trade (~$25-$50 each) to ensure that captured specimens were from the wild. Such a low bounty may not provide enough incentive for capturing lionfish in the wild. Further, such action would only increase the interaction between the public and lionfish, increasing the risk of lionfish envenomations. As the introduction of lionfish is very likely irreversible, future actions should focus on five areas. 1) The population of lionfish should be tracked. 2) Research should be conducted so that scientists can make better predictions regarding the status of the invasion and the effects on native species, ecosystem function, and ecosystem services. 3) Outreach and education efforts must be increased, both specifically toward lionfish and more generally toward the aquarium trade as a method of fish introductions. 4) Additional regulation should be considered to reduce the frequency of marine fish introduction into U.S. waters. However, the issue is more complicated than simply limiting the import of non-native species, and these complexities need to be considered simultaneously. 5) Health care providers along the east coast of the United States need to be notified that a venomous fish is now resident along the southeast United States. The introduction and spread of lionfish illustrates the difficulty inherent in managing introduced species in marine systems. Introduced species often spread via natural mechanisms after the initial introduction. Efforts to control the introduction of marine fish will fail if managers do not consider the natural dispersal of a species following an introduction. Thus, management strategies limiting marine fish introductions need to be applied over the scale of natural ecological dispersal to be effective, pointing to the need for a regional management approach defined by natural processes not by political boundaries. The introduction and success of lionfish along the east coast should change the long-held perception that marine fish invasions are a minimal threat to marine ecosystems. Research is needed to determine the effects of specific invasive fish species in specific ecosystems. More broadly, a cohesive plan is needed to manage, mitigate and minimize the effects of marine invasive fish species on ecosystems that are already compromised by other human activities. Presently, the magnitude of marine fish introductions as a stressor on marine ecosystems cannot be quantified, but can no longer be dismissed as negligible. (PDF contains 31 pages)
Resumo:
This cruise report is a summary of a field survey conducted in coastal-ocean waters of the Mid-Atlantic Bight from Nags Head, North Carolina to Cape Cod, Massachusetts and from approximately 1 nautical mile (nm) of shore seaward to the shelf break (100 m). The survey was conducted May 12 - May 21, 2006 on NOAA Ship NANCY FOSTER Cruise NF-06-06-NCCOS. Multiple indicators of ecological condition were sampled synoptically at each of 49 stations throughout the region using a random probabilistic sampling design. Samples were collected for the analysis of benthic community structure and composition; concentrations of chemical contaminants (metals, pesticides, PAHs, PCBs, PBDEs) in sediments and target demersal biota; nutrient and chlorophyll levels in the water column; and other basic habitat characteristics such as depth, salinity, temperature, dissolved oxygen, pH, sediment grain size, and organic carbon content. The overall purpose of the survey was to collect data to assess the status of ecological condition in coastal-ocean waters of the region, based on these various indicators, and to provide this information as a baseline for determining how environmental conditions may be changing with time. The results will be of value in helping to broaden our understanding of the status of ecological resources and their controlling factors, including impacts of potential ecosystem stressors, in such strategic coastal areas. (18pp.) (PDF contains 24 pages)
Resumo:
(PDF file contains 28 pages.)
Resumo:
Atlantic menhaden, Brrvoortia tyrannus, the object of a major purse-seine fishery along the U.S. east coast, are landed at plants from northern Florida to central Maine. The National Marine Fisheries Service has sampled these landings since 1955 for length, weight, and age. Together with records of landings at each plant, the samples are used to estimate numbers of fish landed at each age. This report analyzes the sampling design in terms of probablity sampling theory. The design is c1assified as two-stage cluster sampling, the first stage consisting of purse-seine sets randomly selected from the population of all sets landed, and the second stage consisting of fish randomly selected from each sampled set. Implicit assumptions of this design are discussed with special attention to current sampling procedures. Methods are developed for estimating mean fish weight, numbers of fish landed, and age composition of the catch, with approximate 95% confidence intervals. Based on specific results from three ports (port Monmouth, N.J., Reedville, Va., and Beaufort, N.C.) for the 1979 fishing season, recommendations are made for improving sampling procedures to comply more exactly with assumptions of the sampling design. These recommendatlons include adopting more formal methods for randomizing set and fish selection, increasing the number of sets sampled, considering the bias introduced by unequal set sizes, and developing methods to optimize the use of funds and personnel. (PDF file contains 22 pages.)
Resumo:
The pressures placed on the natural, environmental, economic, and cultural sectors from continued growth, population shifts, weather and climate, and environmental quality are increasing exponentially in the southeastern U.S. region. Our growing understanding of the relationship of humans with the marine environment is leading us to explore new ecosystem-based approaches to coastal management, marine resources planning, and coastal adaptation that engages multiple state jurisdictions. The urgency of the situation calls for coordinated regional actions by the states, in conjunction with supporting partners and leveraging a diversity of resources, to address critical issues in sustaining our coastal and ocean ecosystems and enhancing the quality of life of our citizens. The South Atlantic Alliance (www.southatlanticalliance.org) was formally established on October 19, 2009 to “implement science-based policies and solutions that enhance and protect the value of coastal and ocean resources of the southeastern United States which support the region's culture and economy now and for future generations.” The Alliance, which includes North Carolina, South Carolina, Georgia, and Florida, will provide a regional mechanism for collaborating, coordinating, and sharing information in support of resource sustainability; improved regional alignment; cooperative planning and leveraging of resources; integrated research, observations, and mapping; increased awareness of the challenges facing the South Atlantic region; and inclusiveness and integration at all levels. Although I am preparing and presenting this overview of the South Atlantic Alliance and its current status, there are a host of representatives from agencies within the four states, universities, NGOs, and ongoing southeastern regional ocean and coastal programs that are contributing significant time, expertise, and energy to the success of the Alliance; information presented herein and to be presented in my oral presentation was generated by the collaborative efforts of these professionals. I also wish to acknowledge the wisdom and foresight of the Governors of the four states in establishing this exciting regional ocean partnership. (PDF contains 4 pages)