55 resultados para Alan Deyermond
Resumo:
NOAA's Biogeograpy Branch, the National Park Service (NPS), US Geological Survey, and the University of the Virgin Islands (UVI) are using acoustice telemetry to quantify spatial patterns and habitat affinities of reef fishes in the US Virgin Islands (USVI). The objective of the study is to define the movements of reef fishes among habitats within and between the Virgin Islands Coral Reef Nationla Monument (VICRNM), adjacent to Virgin Islands National Park (VIIS), and USVI Territorial waters. In order to better understand species habitat utilization patterns and movement of fishes among management regimes and areas open to fishing around St. John, we deployed an array of hydroacoutstic receivers and acoustically tagged reef fishes. A total of 150 fishes, representing 18 species and 10 families were acoustically tagged along the south shore of St. John from July 2006 to June 2008. Thirty six receivers with a detection range of approximately 300m each were deployed in shallow nearshore bays and across the shelf to depths of approximately 30m. Receivers were located within reefs and adjacent to reefs in seagrass, algal beds, or sand habitats. Example results include the movement of lane snappers and blue striped grunts that demonstrated diel movement from reef habitats during daytime hours to offshore seagrass beds at night. Fish associated with reefs that did not have adjacent seagrass beds made more extensive movements than those fishes associated with reefs that had adjacent seagrass habitats. The array comprised of both nearshore and cross shelf location of receives provides information on fine to broad scale fish movement patterns across habitats and among management units to examine the strength of ecological connectivity between management areas and habitats. For more information go to: http://ccma.nos.noaa.gov/ecosystems/ coralreef/acoustic_tracking.html
Resumo:
This technical memorandum describes a developing project under the direction of NOAA’s Biogeography Branch in consultation with the National Park Service and US Geological Survey to understand and quantify spatial patterns and habitat affinities of reef fishes in the US Virgin Islands. The purpose of this report is to describe and disseminate the initial results from the project and to share information on the location of acoustic receivers and species electronic tag ID codes. The Virgin Islands Coral Reef National Monument (VICRNM), adjacent to Virgin Islands National Park (VIIS), was established by Executive Order in 2000, but resources within the monument are poorly documented and the degree of connectivity to VIIS is unknown. Whereas, VICRNM was established with full protection from resource exploitation, VIIS has incurred resource harvest by fishers since 1956 as allowed in its enabling legislation. Large changes in local reef communities have occurred over the past several decades, in part due to overexploitation. In order to better understand the habitat utilization patterns and movement of fishes among management regimes and areas open to fishing around St, John, an array of hydroacoustic receivers was deployed while a variety of reef fish species were acoustically tagged. In July 2006, nine receivers with a detection range of ca. 350 m were deployed in Lameshur Bay on the south shore of St. John, within VIIS. Receivers were located adjacent to reefs and in seagrass beds, inshore and offshore of these reefs. It was found that lane snappers and bluestriped grunts showed diel movement from reef habitats during daytime hours to offshore seagrass bed at night. Timing of migrations was highly predictable and coincided with changes in sunrise and sunset over the course of the year. Fish associated with reefs that did not have adjacent seagrass beds made more extensive movements than those fishes associated with reefs that had adjacent seagrass habitats. In April 2007, 21 additional receivers were deployed along much of the south shore of St. John (ca. 20 km of shoreline). This current array will address broader-scale movement among management units and examine the potential benefits of the VICRNM to provide adult “spillover” into VIIS and adjacent harvested areas. The results from this work will aid in defining fine to moderate spatial scales of reef fish habitat affinities and in designing and evaluating marine protected areas.
Resumo:
Hawaii’s coastal marine resources have declined dramatically over the past 100 years due to multiple anthropogenic stressors including overfishing, coastal development, pollution, overuse, invasive species and climate change. It is now becoming evident that ecosystem-based management, in the form of marine protected areas (MPAs), is necessary to conserve biodiversity, maintain viable fisheries, and deliver a broad suite of ecosystem services. Over the past four decades, Hawaii has developed a system of MPAs to conserve and replenish marine resources around the state. These Marine Life Conservation Districts (MLCDs) vary in size, habitat quality, and management regimes, providing an excellent opportunity to test hypotheses concerning MPA design and function using multiple discreet sampling units. NOAA/NOS/NCCOS/Center for Coastal Monitoring and Assessment’s Biogeography Branch used digital benthic habitat maps coupled with comprehensive ecological studies between 2002 and 2004 to evaluate the efficacy of all existing MLCDs using a spatially-explicit stratified random sampling design. The results from this work have shown that areas fully protected from fishing had higher fish biomass, larger overall fish size, and higher biodiversity than adjacent areas of similar habitat quality. Other key findings demonstrated that top predators and other important fisheries species were more abundant and larger in the MPAs, illustrating the effectiveness of these closures in conserving these populations. Habitat complexity, protected area size and habitat diversity were the major factors in determining effectiveness among MPAs.
Resumo:
The primary objective of this study was to assess the efficacy of the Virgin Islands Coral Reef National Monument (VICR), a marine protected area in St John, US Virgin Islands. Surveys of habitat and fishes inside and outside of VICR were conducted in 2003-2008. Areas outside the VICR had significantly more scleractinian corals, greater habitat complexity, and greater species richness and density of reef fishes than areas inside., Areas inside and outside the VICR exhibited significant decreases in percent scleractinian coral coverage over the study period. A contrasting trend of increasing macroalgal cover was also observed. No clear effect of the severe 2005 coral bleaching event was observed suggesting other causal factors. No obvious trends in the fish community were observed across the study period. The significant decline in habitat condition, coupled with the initial incorporation of some of the more degraded reefs into the marine protected area may result in a longer time period necessary to detect positive changes in the St. John coral reef ecosystem and associated reef fish abundance and community structure.
Resumo:
This report is a result of long-term fish monitoring studies supported by the National Park Service (NPS) at the Virgin Islands National Park since 1988 and is now a joint NPS and NOAA collaboration. Reef fish monitoring data collected from 1988 to 2006 within Virgin Islands National Park (VINP) and adjacent reefs around St. John, U.S. Virgin Islands (USVI) were analyzed to provide information on the status of reef fishes during the monitoring period. Monitoring projects were initiated by the National Park Service (NPS) in the 1980s to provide useful data for evaluation of resources and for development of a long-term monitoring program. Monthly monitoring was conducted at two reef sites (Yawzi Point and Cocoloba Cay) starting in November 1988 for 2.5 years to document the monthly/seasonal variability in reef fish assemblages. Hurricane Hugo (a powerful Category 4 storm) struck the USVI in September 1989 resulting in considerable damage to the reefs around St. John. Abundance of fishes was lower at both sites following the storm, however, a greater effect was observed at Yawzi Point, which experienced a more direct impact from the hurricane. The storm affected species differently, with some showing only small, short-term declines in abundance, and others, such as the numerically abundant blue chromis (Chromis cyanea), a planktivorous damselfish, exhibiting a larger and longer recovery period. This report provides: 1) an evaluation of sampling methods, sample size, and methods used during the sampling period, 2) an evaluation of the spatial and temporal variability in reef fish assemblages at selected reef sites inside and outside of VINP, and 3) an evaluation of trends over 17 years of monitoring at the four reference sites. Comparisons of methods were conducted to standardize assessments among years. Several methods were used to evaluate sample size requirements for reef fish monitoring and the results provided a statistically robust justification for sample allocation.
Resumo:
We estimated the total number of pantropical spotted dolphin (Stenella attenuata) mothers killed without their calves (“calf deficit”) in all tuna purse-seine sets from 1973– 90 and 1996–2000 in the eastern tropical Pacific. Estimates were based on a tally of the mothers killed as reported by color pattern and gender, several color-pattern-based frequency tables, and a weaning model. Over the time series, there was a decrease in the calf deficit from approximately 2800 for the western-southern stock and 5000 in the northeastern stock to about 60 missing calves per year. The mean deficit per set decreased from approximately 1.5 missing calves per set in the mid-1970s to 0.01 per set in the late-1990s. Over the time series examined, from 75% to 95% of the lactating females killed were killed without a calf. Under the assumption that these orphaned calves did not survive without their mothers, this calf deficit represents an approximately 14% increase in the reported kill of calves, which is relatively constant across the years examined. Because the calf deficit as we have defined it is based on the kill of mothers, the total number of missing calves that we estimate is potentially an underestimate of the actual number killed. Further research on the mechanism by which separation of mother and calf occurs is required to obtain better estimates of the unobserved kill of dolphin calves in this fishery.
Resumo:
The Pacific threadfin (Polydactylus sexfilis) is considered one of the premier Hawaiian food fishes but even with catch limits, seasonal closures, and size limits, catches have declined dramatically since the 1960s. It was identified as the top candidate species for stock enhancement in Hawaii, based on the decline in stocks, high market value, and importance of the fishery. In the stock enhancement program for Pacific threadfin, over 430,000 fingerlings of various sizes were implanted with coded wire tags and released in nursery habitats along the windward coast of Oahu between 1993 and 1998. Because few Pacific threadfin were present in creel surveys conducted between 1994 and 1998, Oahu fishermen were offered a $10 reward for each threadfin that was caught (for both hatchery-reared and wild fish). A total of 1882 Pacific threadfin were recovered from the reward program between March 1998 and May 1999, including 163 hatchery-reared fish, an overall contribution of 8.7% to the fishery. Hatchery-reared fish accounted for as high as 71% of returns in the release areas. Hatchery-reared fish were recovered on average 11.5 km (SD=9.8 km) from the release site, although some had moved as far away as 42 km. Average age for recovered hatchery-reared fish was 495 days; the oldest was 1021 days. Cultured Pacific threadfin juveniles survived and recruited successfully to the recreational fishery, accounting for 10% of fishermen’s catches on the windward side of Oahu. Recruitment to the fishery was highest for the 1997 release year; few juveniles from earlier releases were observed. Presence of a few large, fully developed females in the recreational fishery suggested that hatchery-reared fish can survive, grow, and reproductively contribute to the population. Implementation of an enhancement program that is focused on juveniles and perhaps large females, as part of an integrated fishery management strategy, could speed the recovery of this fish population.
Resumo:
Estimates of instantaneous mortality rates (Z) and annual apparent survival probabilities (Φ) were generated from catch-curve analyses for oceanic-stage juvenile loggerheads (Caretta caretta) in the waters of the Azores. Two age distributions were analyzed: the “total sample” of 1600 loggerheads primarily captured by sighting and dipnetting from a variety of vessels in the Azores between 1984 and 1995 and the “tuna sample” of 733 loggerheads (a subset of the total sample) captured by sighting and dipnetting from vessels in the commercial tuna fleet in the Azores between 1990 and 1992. Because loggerhead sea turtles begin to emigrate from oceanic to neritic habitats at age 7, the best estimates of instantaneous mortality rate (0.094) and annual survival probability (0.911) not confounded with permanent emigration were generated for age classes 2 through 6. These estimates must be interpreted with caution because of the assumptions upon which catch-curve analyses are based. However, these are the first directly derived estimates of mortality and survival probabilities for oceanic-stage sea turtles. Estimation of survival probabilities was identified as “an immediate and critical requirement” in 2000 by the Turtle Expert Working Group of the U.S. National Marine Fisheries Service.
Resumo:
Fluctuations in primary productivity at two subalpine lakes reveal both meteorological and biological influences. At Castle Lake, California, large-scale climate events such as the El Niño/Southern Oscillation affect total annual production and, combined with human fishing activity, modify the seasonal pattern of productivity. At Lake Tahoe, California-Nevada, local spring weather conditions modulate annual production and its seasonality by determining the depth of mixing and resulting internal nutrient load. Climatic conditions also contribute to deviations from the long-term trend in productivity by increasing the incidence of forest fires and through anomalous external nutrient loads during precipitation extremes. A 3-year cycle in productivity of as yet unknown origin has also been detected at Lake Tahoe.
Resumo:
Sinum haliotoideum (Linnaeus, 1758) was collected on only two occasions. However, it was given attention when the recently collected specimen netted on 24 August, 1993 was brought live to the laboratory where its movement towards the source of light was noticed, leading to a careful examination and illustration. The specimen survived for 4 days. Illustrations and shell from the earlier collected specimen (August, 1991) were sent to Dr. Alan R. Kabat, division of Mollusck, National Museum of Natural History, Smithsonian Institution, USA, who confirmed that the specimen was Sinum haliotoideum (Linnaeus, 1758). He further informed that this is a moderately common Indo-Pacific species. The material has been deposited in the collections of the Marine Reference Collection and Resource Centre. (MRC) The species being new to the region is briefly described.