79 resultados para 7339-106
Resumo:
The community structure of fishes associated with pelagic Sargassum spp. and open water lacking Sargassum was examined during summer and fall cruises, 1999–2003, in the Gulf Stream off North Carolina. Significantly more individual fishes (n= 18,799), representing at least 80 species, were collected from samples containing Sargassum habitat, compared to 60 species (n=2706 individuals) collected from openwater habitat. The majority (96%) of fishes collected in both habitats were juveniles, and planehead filefish (Stephanolepis hispidus) dominated both habitats. Regardless of sampling time (day or night), Sargassum habitat yielded significantly higher numbers of individuals and species compared with open-water collections. Overall, fishes collected by neuston net tows from Sargassum habitat were significantly larger in length than fishes collected from open-water habitat with neuston nets. A significant positive, linear relationship existed between numbers of fishes and the quantity of Sargassum collected by neuston net. Underwater video recordings indicated a layered structure of fishes among and below the algae and that smaller fishes were more closely associated with the algae than larger fishes. Observations of schooling behaviors of filefishes (Monacanthidae), dolphinfish (Coryphaena hippurus), and jacks (Carangidae), and fish-jellyfish associations were also recorded with an underwater video camera. Our data indicate that Sargassum provides a substantial nursery habitat for many juvenile fishes off the U.S. southeast coast.
Resumo:
Catch rates from surveys are used as indices of abundance for many fish species. Relative abundance estimates from surveys with longline gear do not usually account for possible effects of gear saturation, which potentially creates competition among fish for baited hooks and misrepresentations of abundance trends. We examined correlations between catch rates of sablefish (Anoplopoma fimbria) and giant grenadier (Albatrossia pectoralis) and between sablefish and shortraker (Sebastes borealis) and rougheye rockfish (Sebastes aleutianus) from 25 years of longline surveys in Alaska waters for evidence of competition for hooks. Sablefish catch rates were negatively correlated with giant grenadier catch rates in all management areas in Alaskan waters, and sablefish and rockfish were negatively correlated in five of the six areas, indicating that there is likely competition for hooks during longline surveys. Comparative analyses were done for trawl survey catch rates, and no negative correlations were observed, indicating that the negative correlations on the longline surveys are not due to differing habitat preferences or direct competition. Available adjustments for gear saturation may be biased if the probability of capture does not decrease linearly with baited hooks. A better understanding of each fish species’ catch probabilities on longline gear are needed before adjustments for hook competition can be made.
Resumo:
We used bomb radiocarbon (14C) in this age validation study of Dover sole (Microstomus pacificus). The otoliths of Dover sole, a commercially important fish in the North Pacific, are difficult to age and ages derived from the current break-andburn method were not previously validated. The otoliths used in this study were chosen on the basis of estimated birth year and for the ease of interpreting growth zone patterns. Otolith cores, material representing years 0 through 3, were isolated and analyzed for 14C. Additionally, a small number of otoliths with difficult-to-interpret growth patterns were analyzed for 14C to help determine age interpretation. The measured Dover sole 14C values in easier-to-interpret otoliths were compared with a 14C reference chronology for Pacific halibut (Hippoglossus stenolepis) in the North Pacific. We used an objective statistical analysis where sums of squared residuals between otolith 14C values of Dover sole and the reference chronology were examined. Our statistical analysis also included a procedure where the Dover sole 14C values were standardized to the reference chronology. These procedures allowed an evaluation of aging error. The 14C results indicated that the Dover sole age estimates from the easier-to-interpret otoliths with the break-and-burn method are accurate. This study validated Dover sole ages from 8 to 47 years.
Resumo:
A 4500-year archaeological record of Pacific cod (Gadus macrocephalus) bones from Sanak Island, Alaska, was used to assess the sustainability of the modern fishery and the effects of this fishery on the size of fish caught. Allometric reconstructions of Pacific cod length for eight prehistoric time periods indicated that the current size of the nearshore, commercially fished Pacific cod stocks is statistically unchanged from that of fish caught during 4500 years of subsistence harvesting. This finding indicates that the current Pacific cod fishery that uses selective harvesting technolog ies is a sustainable commercial fishery. Variation in relative Pacific cod abundances provides further insights into the response of this species to punctuated changes in ocean climate (regime shifts) and indicates that Pacific cod stocks can recover from major environmental perturbations. Such palaeofisheries data can extend the short time-series of fisheries data (<50 yr) that form the basis for fisheries management in the Gulf of Alaska and place current trends within the context of centennial- or millennial-scale patterns.
Resumo:
Distribution and prevalence of the phoretic barnacle Xenobalanus on cetacean species are reported for 22 cetaceans in the eastern tropical Pacific Ocean (21 million km2). Four cetacean species are newly reported hosts for Xenobalanus: Bryde’s whale (Balaenoptera edeni), long-beaked common dolphin (Delphinus capensis), humpback whale (Megaptera novaeangliae), and spinner dolphin (Stenella longirostris). Sightings of Xenobalanus in pelagic waters are reported for the first time, and concentrations were located within three productive zones: near the Baja California peninsula, the Costa Rica Dome and waters extending west along the 10°N Thermocline Ridge, and near Peru and the Galapagos Archipelago. Greatest prevalence was observed on blue whales (Balaenoptera musculus) indicating that slow swim speeds are not necessary for effective barnacle settlement. Overall, prevalence and prevalence per sighting were generally lower than previously reported. The number of barnacles present on an individual whale was greatest for killer whales, indicating that Xenobalanus larvae may be patchily distributed. The broad geographic distribution and large number of cetacean hosts, indicate an extremely cosmopolitan distribution. A better understanding of the biology of Xenobalanus is needed before this species can be used as a biological tag.
Resumo:
The on-offshore distributions of tuna larvae in near-reef waters of the Coral Sea, near Lizard Island (14°30ʹS, 145°27ʹE), Australia, were investigated during four cruises from November 1984 to February 1985 to test the hypothesis that larvae of these oceanic fishes are found in highest abundance near coral reefs. Oblique bongo net tows were made in five on-offshore blocks in the Coral Sea, ranging from 0–18.5 km offshore of the outer reefs of the Great Barrier Reef, as well as inside the Great Barrier Reef Lagoon. The smallest individuals (<3.2 mm SL) of the genus Thunnus could not be identified to species, and are referred to as Thunnus spp. We found species-specific distributional patterns. Thunnus spp. and T. alalunga (albacore) larvae were most abundant (up to 68 larvae/100 m2) in near-reef (0–5.5 km offshore) waters, whereas Katsuwonus pelamis (skipjack tuna) larvae increased in abundance in the offshore direction (up to 228 larvae/100 m2, 11.1–18.5 km offshore). Larvae of T. albacares (yellowfin tuna) and Euthynnus affinis (kawakawa) were relatively rare throughout the study region, and the patterns of their distributions were inconclusive. Few larvae of any tuna species were found in the lagoon. Size-frequency distributions revealed a greater proportion of small larvae inshore compared to offshore for K. pelamis and T. albacares. The absence of significant differences in size-frequency distributions for other species and during the other cruises was most likely due to the low numbers of larvae. Larval distributions probably resulted from a combination of patterns of spawning and vertical distribution, combined with wind-driven onshore advection and downwelling on the seaward side of the outer reefs.
Resumo:
We examined the effect of habitat and shrimp trawl bycatch on the density, size, growth, and mortality of inshore lizardfish (Synodus foetens), a nonexploited species that is among the most widespread and abundant benthic fishes in the north central Gulf of Mexico. Results of quarterly trawl sampling conducted from spring 2004 through spring 2005 revealed that inshore lizardfish are most abundant on sand habitat, but larger fish are more common on shell rubble habitat. There was no significant difference in fish density between habitats exposed to shrimp trawling on the open shelf versus those habitats within a permitted artificial reef zone that served as a de facto no-trawl area; this finding indicates that either inshore lizardfish experienced minimal effects from trawling or, more likely, that fish moved between trawled and nontrawled habitats. Exploitation ratio (bycatch mortality/total morality) estimates derived from catch curve analysis ranged from 0.43 inside the artificial reef zone to 0.55 outside the reef zone, thus indicating that inshore lizardfish are subject to significant fishing mortality in the north central Gulf of Mexico despite the lack of a directed fishery for the species. We infer from this result that effects of shrimp trawl bycatch may be significant at the population level for nonexploited species and that a broader ecosystem-scale examination of bycatch effects is warranted.
Resumo:
Demersal fishes hauled up from depth experience rapid decompression. In physoclists, this can cause overexpansion of the swim bladder and resultant injuries to multiple organs (barotrauma), including severe exophthalmia (“pop-eye”). Before release, fishes can also be subjected to asphyxia and exposure to direct sunlight. Little is known, however, about possible sensory deficits resulting from the events accompanying capture. To address this issue, electroretinography was used to measure the changes in retinal light sensitivity, flicker fusion frequency, and spectral sensitivity in black rockfish (Sebastes melanops) subjected to rapid decompression (from 4 atmospheres absolute [ATA] to 1 ATA) and Pacific halibut (Hippoglossus stenolepis) exposed to 15 minutes of simulated sunlight. Rapid decompression had no measurable influence on retinal function in black rockfish. In contrast, exposure to bright light significantly reduced retinal light sensitivity of Pacific halibut, predominately by affecting the photopigment which absorbs the green wavelengths of light (≈520–580 nm) most strongly. This detriment is likely to have severe consequences for postrelease foraging success in green-wavelength-dominated coastal waters. The visual system of Pacific halibut has characteristics typical of species adapted to low light environments, and these characteristics may underlie their vulnerability to injury from exposure to bright light.
Resumo:
Trawling and dredging on Georges Bank (northwest Atlantic Ocean) have altered the cover of colonial epifauna, as surveyed through in situ photography. A total of 454 photographs were analyzed from areas with gravel substrate between 1994 and 2000 at depths of 40–50 m and 80–90 m. The cover of hydroids, bushy bryozoans, sponges, and tubeworms was generally higher at sites undisturbed by fishing than at sites classified as disturbed. The magnitude and significance of this effect depended on depth and year. Encrusting bryozoans were the only type of colonial epifauna positively affected by bottom fishing. Species richness of noncolonial epifauna declined with increased bottom fishing, but Simpson’s index of diversity typically peaked at intermediate levels of habitat disturbance. Species that were more abundant at undisturbed sites possessed characteristics that made them vulnerable to bottom fishing. These characteristics include emergent growth forms, soft body parts, low motility, use of complex microhabitats, long life spans, slow growth, and larval dispersal over short distances. After the prohibition of bottom fishing at one site, both colonial and noncolonial species increased in abundance. Populations of most taxa took two years or more to increase after the fishing closure. This finding indicates that bottom fishing needs to be reduced to infrequent intervals to sustain the benthic species composition of Georges Bank at a high level of biodiversity and abundance.
Resumo:
It is evident from several field experiments with vertical longlines and archival tags, as well as concurrent studies of predator-prey relationships, that adult specimens of the deep-water flatfish Greenland halibut (Reinhardtius hippoglossoides) make regular excursions several hundred meters through the water column. The distribution of longline catches within the water column is confined to a well-defined depth layer overlapping with the distribution of blue whiting (Micromesistius poutassou), an important prey species, and depth recordings from archival tags overlap with Atlantic herring (Clupea harengus), the other major fish prey. The degree of pelagic use varies with fish size as well as seasons. Smaller individuals are found further off the bottom, and pelagic activity is greatest during early autumn. Interaction with pelagic prey species can influence results from bottom trawl surveys.
Resumo:
Skates (family Rajidae) are oviparous and lay tough, thick-walled eggs. At least some skate species lay their eggs in spatially restricted nursery grounds where embryos develop and hatch (Hitz, 1964; Hoff, 2007). After hatching, neonates may quickly leave the nursery grounds (Hoff, 2007). Egg densities in these small areas may be quite high. As an example, in the eastern Bering Sea, a site <2 km2 harbored eggs of Alaska skate (Bathyraja parmifera) exceeding 500,000/km2. All skate nursery grounds have been identified over soft sea floors (Lucifora and García, 2004; Hoff, 2007).
Resumo:
In this note, we document polymerase-chain-reaction (PCR) primer pairs for 101 nuclear-encoded microsatellites designed and developed from a genomic library for red drum (Sciaenops ocellatus). Details of the genomic library construction, the sequencing of positive clones, primer design, and PCR protocols may be found in Karlsson et al. (2008). The 101 microsatellites (GENBA NK Accession Numbers EU015882-EU015982) were amplified successfully and used to genotype 24 red drum obtained from Galveston Bay, Texas (Table 1). A total of 69 of the microsatellites had an uninterrupted (perfect) dinucleotide motif, and 30 had an imperfect dinucleotide motif; one microsatellite had an imperfect tetranucleotide motif, and one had an imperfect and compound motif (Table 1 ). Sizes of the cloned alleles ranged from 84 to 252 base pairs. A ‘blast’ search of the GENBANK database indicated that all of the primers and the cloned alleles were unique (i.e., not duplicated).
Resumo:
A nursery site for the Alaska skate (Bathyraja parmifera) was sampled seasonally from June 2004 to July 2005. At the small nursery site (~2 km2), located in a highly productive area near the shelf-slope interface at the head of Bering Canyon in the eastern Bering Sea, reproductive males and females dominated the catch and neonate and juvenile skates were rare. Seasonal samples showed summertime (June and July) as the peak reproductive time in the nursery although some reproduction occurred throughout the year. Timeseries analysis of embryo length frequencies revealed that three cohorts were developing simultaneously and the period of embryonic development was estimated at 3.5 years and average embryo growth rate at 0.2 mm/day. Estimated egg case deposition occurred mainly during summertime and hatching occurred during winter months. Protracted hatching times may be common for oviparous elasmobranch species and may be directly correlated with ambient temperatures as evident from a meta-data analysis. Evidence indicates that the Alaska skate uses the eastern Bering Sea outer continental shelf region for reproduction and the middle and inner shelf regions as habitat for immature and subadults. Skate nurseries may be vulnerable to disturbances because they are located in highly productive areas and because embryos develop slowly.
Resumo:
Variation at 14 microsatellite loci was examined in 34 chum salmon (Oncorhynchus keta) populations from Russia and evaluated for its use in the determination of population structure and stock composition in simulated mixed-stock fishery samples. The genetic differentiation index (Fst) over all populations and loci was 0.017, and individual locus values ranged from 0.003 to 0.054. Regional population structure was observed, and populations from Primorye, Sakhalin Island, and northeast Russia were the most distinct. Microsatellite variation provided evidence of a more fine-scale population structure than those that had previously been demonstrated with other genetic-based markers. Analysis of simulated mixed-stock samples indicated that accurate and precise regional estimates of stock composition were produced when the microsatellites were used to estimate stock compositions. Microsatellites can be used to determine stock composition in geographically separate Russian coastal chum salmon fisheries and provide a greater resolution of stock composition and population structure than that previously provided with other techniques.
Resumo:
Cape Cod Bay (Massachusetts) is the only known winter and early spring feeding area for concentrations of the endangered North Atlantic right whale (Eubalaena glacialis) population. During January–May, 1998–2002, 167 aerial surveys were conducted (66,466 km of total survey effort), providing a complete representation of the spatiotemporal distribution of right whales in the bay during winter and spring. A total of 1553 right whales were sighted; some of these sightings were multiple sightings of the same individuals. Right whale distribution and relative abundance patterns were quantified as sightings per unit of effort (SPUE) and partitioned into 103 23-km2 cells and 12 2-week periods. Significant interannual variations in mean SPUE and timing of SPUE maxima were likely due to physically forced changes in available food resources. The area of greatest SPUE expanded and contracted during the season but its center remained in the eastern bay. Most cells with SPUE>0 were inside the federal critical habitat (CH) and this finding gave evidence of the need for management measures within CH boundaries to reduce anthropogenic mortality from vessel strikes and entanglement. There was significant within-season SPUE variability: low in December−January, increasing to a maximum in late February−early April, and declining to zero in May; and these results provide support for management measures from 1 January