86 resultados para 1880-1970
Resumo:
The evolution of the fishery of the pink shrimp Penaeus duorarum Burkenroad is analysed from its beginning in 1969 until the end of 1970. A rapid and general decline of the yield has been evident during this period. The actual shrimp fleet seems to be too big to allow an exploitation economically convenient of the stock.
Resumo:
Data are reported on: (1) date and place of ringing the juveniles and adults of the sea bird of the genus Sterna in Côte d'Ivoire, and (2) date and place of recapture during the winter periods of 1969, 1970, 1971, 1972, 1973.
Resumo:
Skates (family Rajidae) are oviparous and lay tough, thick-walled eggs. At least some skate species lay their eggs in spatially restricted nursery grounds where embryos develop and hatch (Hitz, 1964; Hoff, 2007). After hatching, neonates may quickly leave the nursery grounds (Hoff, 2007). Egg densities in these small areas may be quite high. As an example, in the eastern Bering Sea, a site <2 km2 harbored eggs of Alaska skate (Bathyraja parmifera) exceeding 500,000/km2. All skate nursery grounds have been identified over soft sea floors (Lucifora and García, 2004; Hoff, 2007).
Resumo:
Knowledge of the distribution and biology of the ragfish, Icosteus aenigmaticus, an aberrant deepwater perciform of the North Pacific Ocean, has increased slowly since the first description of the species in the 1880’s which was based on specimens retrieved from a fish monger’s table in San Francisco, Calif. As a historically rare, and subjectively unattractive appearing noncommercial species, ichthyologists have only studied ragfish from specimens caught and donated by fishermen or by the general public. Since 1958, I have accumulated catch records of >825 ragfish. Specimens were primarily from commercial fishermen and research personnel trawling for bottom and demersal species on the continental shelves of the eastern North Pacific Ocean, Gulf of Alaska, Bering Sea, and the western Pacific Ocean, as well as from gillnet fisheries for Pacific salmon, Oncorhynchus spp., in the north central Pacific Ocean. Available records came from four separate sources: 1) historical data based primarily on published and unpublished literature (1876–1990), 2) ragfish delivered fresh to Humboldt State University or records available from the California Department of Fish and Game of ragfish caught in northern California and southern Oregon bottom trawl fisheries (1950–99), 3) incidental catches of ragfish observed and recorded by scientific observers of the commercial fisheries of the eastern Pacific Ocean and catches in National Marine Fisheries Service trawl surveys studying these fisheries from 1976 to 1999, and 4) Japanese government research on nearshore fisheries of the northwestern Pacific Ocean (1950–99). Limited data on individual ragfish allowed mainly qualitative analysis, although some quantitative analysis could be made with ragfish data from northern California and southern Oregon. This paper includes a history of taxonomic and common names of the ragfish, types of fishing gear and other techniques recovering ragfish, a chronology of range extensions into the North Pacific and Bering Sea, reproductive biology of ragfish caught by trawl fisheries off northern California and southern Oregon, and topics dealing with early, juvenile, and adult life history, including age and growth, food habits, and ecology. Recommendations for future study are proposed, especially on the life history of juvenile ragfish (5–30 cm FL) which remains enigmatic.
Resumo:
Aboriginal Australians consumed oysters before settlement by Europeans as shown by the large number of kitchen middens along Australia's coast. Flat oysters, Ostrea angasi, were consumed in southeastern Australia, whereas both flat and Sydney rock oysters, Saccostrea glomerata, are found in kitchen middens in southern New South Wales (NSW), but only Sydney rock oysters are found in northern NSW and southern Queensland. Oyster fisheries began with the exploitation of dredge beds, for the use of oyster shell for lime production and oyster meat for consumption. These natural oyster beds were nealy all exhausted by the late 1800's, and they have not recovered. Oyster farming, one of the oldest aquaculture industries in Australia, began as the oyster fisheries declined in the late 1800's. Early attempts at farming flat oysters in Tasmania, Victoria, and South Australia, which started in the 1880's, were abandoned in the 1890's. However, a thriving Sydney rock oyster industry developed from primitive beginnings in NSW in the 1870's. Sydney rock oysters are farmed in NSW, southern Queensland, and at Albany, Western Australia (WA). Pacific oysters, Crassostrea gigas, are produced in Tasmania, South Australia, and Port Stephens, NSW. FLant oysters currently are farmed only in NSW, and there is also some small-scale harvesting of tropical species, the coarl rock or milky oyster, S. cucullata, and th black-lip oyster, Striostrea mytiloides, in northern Queensland. Despite intra- and interstate rivalries, oyster farmers are gradually realizing that they are all part of one industry, and this is reflected by the establishment of the national Australian Shellfish Quality Assuarance Program and the transfer of farming technology between states. Australia's oyster harvests have remained relatively stable since Sydney rock oyster production peaked in the mid 1970's at 13 million dozen. By the end of the 1990's this had stabilized at around 8 million dozen, and Pacific oyster production reached a total of 6.5 million dozen from Tasmania, South Australia, and Port Stephens, a total of 14.5 million dozen oysters for the whole country. This small increase in production during a time of substantial human population growth shows a smaller per capita consumption and a declining use of oysters as a "side-dish."
Resumo:
This is the fifth Annual report of the Cumberland River Authority on information of its activities and responsibilities on river management in its area between the beginning of April 1969, to the end of March 1970. The report contains 5 main sections on water resources, land drainage, fisheries, pollution, and finally the expenditure and income for the 12 month period. The first area that the report deals with is water resources, wich includes periodical surveys, hydrometric schemes, acceptable flows, conservation works and a review of rainfall and river flow. The section on land drainage looks at work on improvement schemes, floods, charges and information on maintenance work carried out on rivers including Wampool, Waver, Derwent, Ellen, Mite, Bleng, Eden, Caldew and Petteril. The fisheries section covers 5 districts of the River Eden, Esk, Ellen, Derwent and South West Cumberland. It includes angling information and a general report for salmon and sea trout, brown trout and freshwater fish. Fish disease and fish hatchery are also covered as well as fisheries protection and licence duties. The fourth section on pollution deals with water quality, and the results of samples taken from rivers Eden, Eamont, Petteril, Caldew, Calder, Bleng, Derwent, Ehen, Ellen, Wampool and Waver are also given. It also covers information on sewage and trade effluents. The River Authorities preceded the Environment Agency which came into existence in 1996.
Resumo:
This is the 5th Annual Report of the Rive Exe Scale Reading Investigation for the 1970 season by the Devon River Authority. The object of this investigation is to examine, by means of scale reading, the biology of age classes of the salmon population of the River Exe. It reviews the methods used for the collection of scales and examination of the materials. It shows the results of the survey and the number of scales studied from each of the various sea-age classes, time of running with distribution of the sea-age groups throughout the season, fish sizes and smolt ages at migration. All is summarized in tables, and figures are included showing weight distributions for each age classes and frequency distributions.