67 resultados para 153-921
Resumo:
Report of Opening Session (p. 1). Report of Governing Council (p. 15). Report of the Finance and Administration Committee (p. 65). Reports of Science Board and Committees: Science Board Inter-Sessional Meeting (p. 83); Science Board (p. 93); Biological Oceanography Committee (p. 105); Fishery Science Committee (p. 117); Marine Environmental Quality Committee (p. 129); Physical Oceanography and Climate Committee (p. 139); Technical Committee on Data Exchange (p. 145); Technical Committee on Monitoring (p. 153). Reports of Sections, Working and Study Groups: Section on Carbon and Climate (p. 161); Section on Ecology of Harmful Algal Blooms in the North Pacific (p. 167); Working Group 19 on Ecosystem-based Management Science and its Application to the North Pacific (p. 173); Working Group 20 on Evaluations of Climate Change Projections (p. 179); Working Group 21 on Non-indigenous Aquatic Species (p. 183); Study Group to Develop a Strategy for GOOS (p. 193); Study Group on Ecosystem Status Reporting (p. 203); Study Group on Marine Aquaculture and Ranching in the PICES Region (p. 213); Study Group on Scientific Cooperation between PICES and Non-member Countries (p. 225). Reports of the Climate Change and Carrying Capacity Program: Implementation Panel on the CCCC Program (p. 229); CFAME Task Team (p. 235); MODEL Task Team (p. 241). Reports of Advisory Panels: Advisory Panel for a CREAMS/PICES Program in East Asian Marginal Seas (p. 249); Advisory Panel on Continuous Plankton Recorder Survey in the North Pacific (p. 253); Advisory Panel on Iron Fertilization Experiment in the Subarctic Pacific Ocean (p. 255); Advisory Panel on Marine Birds and Mammals (p. 261); Advisory Panel on Micronekton Sampling Inter-calibration Experiment (p. 265). 2007 Review of PICES Publication Program (p. 269). Guidelines for PICES Temporary Expert Groups (p. 297). Summary of Scientific Sessions and Workshops (p. 313). Report of the ICES/PICES Conference for Early Career Scientists (p. 355). Membership (p. 367). Participants (p. 387). PICES Acronyms (p. 413). Acronyms (p. 415).
Resumo:
This workshop was convened to begin building a foundation of understanding for developing and evaluating proposed measures for the rational management of the blue crab fishery in Chesapeake Bay. Our goal was to generate a summary of knowledge of blue crab stock dynamics. Specifically, we intended to address, and hoped to estimate, the basic parameters of an exploited stock - growth, mortality, natality, migration rates, sex ratios and abundance. In one sense these objectives were simply a means for organizing our discussions. A second objective was to compile at the workshop pertinent data held by the major research institutions on Chesapeake Bay so all participants could see the kinds and extent of existing data. As with many stock assessment problems, tailoring an estimating procedure around known existing data can be more productive than deciding on a procedure and then trying to find the required data in someone else's files. Authors of papers contributed to the report: B.S. Hester and P.R. Mundy (p. 50); Qisheng Tang (p. 86); L. Eugene Cronin (p. 111); J.R. McConaugha (p. 128); Cluney Stagg and Phil Jones (p. 153).
Resumo:
We examine monthly and seasonal patterns of precipitation across various elevations of the eastern Central Valley of California and the Sierra Nevada. A measure of the strength of the orographic effect called the “precipitation ratio” is calculated, and we separate months into four groups based on being wet or dry and having low or high precipitation ratios. Using monthly maps of mean 700-mb height anomalies, we describe the northern hemisphere mid-tropospheric circulation patterns associated with each of the four groups. Wet months are associated with negative height anomalies over the eastern Pacific, as expected. However, the orientation of the trough is different for years with high and low precipitation ratios. Wet months with high ratios typically have circulation patterns factoring a west-southwest to east-northeast storm track from around the Hawaiian Islands to the Pacific Northwest of the United States. Wet months with low precipitation ratios are associated with a trough centered near the Aleutians and a northwest to southeast storm track. Dry months are marked by anticyclones in the Pacific, but this feature is more localized to the eastern Pacific for months with low precipitation ratios than for those with high ratios. Using precipitation gauge and snow course data from the American River and Truckee-Tahoe basins, we determined that the strength of the orographic effect on a seasonal basis is spatially coherent at low and high elevations and on opposite sides of the Sierra Nevada crestline.
Resumo:
Digital maps of the shallow (<~30m deep) coral reef ecosystems of Majuro Atoll, Republic of the Marshall Islands, were created through visual interpretation of remote sensing imagery acquired between 2004 and 2006. Reef ecosystem features were digitized directly into a Geographic Information System. Benthic features were categorized according to a classification scheme with attributes including zone (location such as lagoon or forereef, etc.), structure (bottom type such as sand or patch reef, etc.) and percent hard bottom. This atlas consists of 27 detailed maps displaying reef zone and structure of coral ecosystems around Majuro. Adjacent maps in the atlas overlap slightly to ensure complete coverage. Maps and associated products can be used to support science and management activities on Majuro reef ecosystems including inventory, monitoring, conservation, and sustainable development applications. Maps are not to be used for navigation.
Resumo:
From 1992 to 1996, 153 bottlenose dolphin stranded in South Carolina, accounting for 73% of all marine mammal strandings during this period. The objectives of our study were to evaluate data from these strandings to deter-mine 1) annual trends in strandings, 2) seasonal and spatial distribution trends, 3) life history parameters such as sex ratio and age classes, 3) seasonal trends in reproduction, and 4) the extent to which humans have played a role in causing these strandings (human inter-actions). The results showed that 49% of the bottlenose dolphin strandings occurred between April and July; the greatest number of strandings occurred in July (n=22). There was a significant seasonal increase in the distribution of bottlenose dolphin strandings in the northern portion of the state from November to March. Bottlenose dolphin neonates stranded in every month of the year, except March and October, and represented 19.6% of the total number of strandings with known length (n=138). Fifty-five percent (n=15) of bottlenose dolphin neonatal strandings occurred between May and July. Bottlenose dolphins determined to have died as the result of human interaction accounted for 23.1% of the total number of bottlenose dolphin strandings (excluding those for which a determination could not be made).Incidents of bottlenose dolphin entanglements in nets accounted for 16 of these cases.