49 resultados para weed Euphorbiaceae
Monitoring report: sand dune reconstruction and restoration, at the Moss Landing Marine Laboratories
Resumo:
The Plan for Sand Dune Reconstruction and Restoration (and Biological Assessment) at Moss Landing Marine Laboratories (ABA Consultants, April 1, 1992) described reconstruction of dune contours and biological restoration with native dune plants to be carried out over the 8 acre site formerly occupied by the marine labs (prior to the Loma Prieta earthquake of October 1989). The plan called for annual reports in letter form which would present data on plant abundance, a short narrative description of changes on the site, progress towards recovery of the plant community, and assessment of progress based on restoration goals and further steps to be taken. This monitoring report [dated April 25, 1994] addresses those points and also contains a summary of other activities integral in dune restoration -- education, public participation, school and conservation organization field trips, as well as the associated activities of restoration, plant collecting, propagation, and weed control.
Resumo:
Culture of gulsha (Mystus cavasius) with rajpunti (Puntius gonionotus) and silver carp ( Hypophthalmichthys molitrix) was undertaken to assess the growth and production potential of these species under polyculture system. Fingerlings of gulsha, rajpunti and silver carp were stocked at a density of 18.000, 10.000 and 4.000/ha respectively. Two treatments were tested in this experiment. Treatment-I was conducted with rice bran and mustard oil cake and treatment-II with rice bran and duck weed. All the ponds were fertilized with urea and TSP at fortnightly intervals. After six months' rearing, the gross production was estimated to be 3,582 and 3,125 kg/ha from treatment-I and treatment-II respectively. Total yield showed non-significant differences (P>0.05) between the treatments.
Resumo:
An experiment was conducted in brackish water ponds with transplanted aquatic weed (Najas sp.) to study the effect of submerged aquatic vegetation on culture of Penaeus monodon. Out of six ponds three were without any aquatic vegetation (T1) while in other three ponds weeds were planted covering 40% of the pond bottom (T2). Hatchery produced post larva of P. monodon (0.006 g) were stocked in all ponds at a density of 40,000/ha. Shrimps were fed twice daily with commercial and formulated feed prepared from locally available ingredients. After 105 days of rearing shrimp of highest average weight (63.18g) was obtained from T2 with a survival rate of 25.90% and the total production was obtained at 654.54 kg/ha. The average weight, survival and total production of shrimp in T1 were 35.0 g, 28.76% and 405.63 kg/ha, respectively.
Resumo:
The results of experiments conducted on a pond dyke (655m²) in the Wastewater Aquaculture Division of the Central Institute of Freshwater Aquaculture, Rahara, during 1992-93 for maximising production through optimum utilisation of resources are communicated. Round the year intensive cultivation of okra (Abelmoschus esculentus), amaranth (Amaranthus gangeticus and A. viridus), water-bind weed (Ipomea aquatica), Indian spinach (Basella rubra), radish (Raphanus sativum), amaranth (Amaranthus viridis), cauliflower (Brassica oleracia var. votrytis), cabbage (Brassica oleracia var. capitota) and papaya (Carica papaya) was undertaken using the treated sewage water from fish ponds for irrigation. The pond dyke yielded 5,626.5 kg vegetable which worked out to 85.9 tons per ha per year. Multiple cropping with these vegetables excluding papaya on a 460 m² dyke recorded a production of 4,926.5 kg at the rate of 107.1t per ha/yr. An improved yearly net return of about 35% over investment could be achieved through the selection of highly productive and pest resistant vegetable crops of longer duration for integration into the system. Introduction of this type of integrated farming would enhance the overall productivity and returns from farming.
Resumo:
The results of two sets of experiments on mono-culture of grass carp (Ctenopharyngodon idella) and mixed culture of carps (grass carp 50 : catla 20 : rohu 15 : mrigal 15) fed exclusively with vegetable leaves are reported. The experiments were conducted with two replicates each in 0.02 ha ponds of Wastewater Aquaculture Division of the Central Institute of Freshwater Aquaculture, Rahara during 1991-93. Monoculture of grass carp stocked at 1000/ha demonstrated an average net production of 21.0 kg/ 0.02 ha/8 months (1501 kg/ha/yr). Mixed culture of carps stocked at 5000 /ha recorded an average net production of 22.5 kg/0.02 ha/8 months (1903.7 kg/ha/yr). Field studies revealed that water bind weed (Ipomoea aquatica) is the most preferred feed of grass carp amongst vegetable leaves followed by amaranths (Amaranthus gangeticus and Amaranthus viridis), cauliflower (Brassica oleracia var. votrytis) and cabbage (Brassica oleracia var. capitata) leaves. Through selection of highly productive leaf vegetables and suitable crop planning on fallow fish pond dykes, round the year feeding programme of grass carp has been explored. Recycling of sewage effluent for vegetable production and utilisation of vegetable leaves for fish production is considered an ideal way of integrated resource management for low cost production.
Resumo:
A simplified process was worked out to prepare crude agar from red seaweeds (Gracilaria sp.). The process required careful preliminary cleaning and bleaching (sun-drying) of the weed. The agar was extracted by boiling with water in a mixture (2%) strong enough to set as a jelly. Freezing the jelly over a 3—day period in an ice-making machine, adjusted to work slowly, separated out ice and agar. The blocks were thawed out and the agar dried in the sun. The efficiency of extraction was over 800/A.
Resumo:
Composition, abundance and environmental characteristics of the sea-weed resources of Mozambique were investigated along the whole Mozambican sea shore between May, 1979 and November, 1980. The limits of distribution of tropical algae were identified and located close to parallel 21 degree 00'S. Important concentrations of sea-weeds were found in the southern region, but only the Euchema resource in the coast of Cabo Delgado looked promising for commercial exploitation. Biological studies of Euchema were undertaken, the results of which permit the recommendation of a strategy for immediate harvesting which could yield 400-500 tons annually. Further proposals for the culture of sea-weeds are also included.
Resumo:
This is the report of a research study aimed at providing an understanding of the fishing communities and institutions about the water hyacinth problem and how it impacts on their activities. Its also provides strategies for sustainable control of the weed. The research reports are intended to disseminate the findings of the studies carried out under the Socio-economics Sub-component of LVEMP to a wide spectrum of users, including policy makers, stakeholders and researchers.
Resumo:
During a regional workshop held in Mukono, Uganda (May 2001) by scientists and technocrats from Kenya, Tanzania and Uganda, working on water hyacinth management under the Lake Victoria Environmental Management Project (LVEMP), it was resolved that a survey of River Kagera be made to study the status of water hyacinth infestation and biological control in the river. Reports at the Mukono Workshop indicated that although Tanzania and Uganda had made serious effort to introduced biological control weevils (Neochefina eichhorniae and Neochetina brucht) on the weed in River Kagera, the level of establishment of biological control in the river was doubtful. Large quantities of water hyacinth biomass drifted down River Kagera into Lake Victoria daily. Similar reports of apparent inability of biological control weevils to fully establish and have effect on water hyacinth in River Nile, especially the Upper Victoria Nile, were also made by Uganda, and large quantities of weed biomass continuously drifted down the Upper Victoria Nile into Lake Kyoga. This was in spite of the successful control of the weed in Lake Victoria between 1998 and 2000
Resumo:
The mobile water hyacinth, which was produced in growth zones, especially Murchison Bay, was mainly exported to three sheltered storage bays (Thruston, Hannington and Waiya). Between 1996 and May 1998, the mobile form of water hyacinth occupied about 800 ha in Thruston Bay, 750 ha in Hannington Bay and 140 ha in Waiya Bay). Biological control weevils and other factors, including localised nutrient depletion, weakened the weed that was confined to the bays and it sunk around October 1998. The settling to the bottom of such huge quantities of organic matter its subsequent decomposition and the debris from this mass was likely to have environmental impacts on biotic communities (e.g. fish and invertebrate), physico-chemical conditions (water quality), and on socio-economic activities (e.g. at fish landings, water abstraction, and hydro-power generation points). Sunken water. hyacinth debris could also affect nutrient levels in the water column and lead to reduction in the content of dissolved oxygen. The changes in nutrient dynamics and oxygen levels could affect algal productivity, invertebrate composition and fish communities. Socio-economic impacts of dead sunken weed were expected from debris deposited along the shoreline especially at fish landings, water abstraction and hydropower generation points. Therefore, environmental impact assessment studies were carried out between 1998 and 2002 in selected representative zones of Lake Victoria to identify the effects of the sunken water hyacinth biomass
Resumo:
The importance of selection of species for culture according to the ecological niches and fish food organisms is highlighted with respect to the Fox Sagar, an irrigation take. The tank was infested with submerged vegetation as well as minnows and weed fishes, which rendered the tank unsuitable for the culture of Indian major carps. The tank was stocked with 8000 fingerlings of Channa marulius and C. striatus during 1981 by the local fisherman co-operative society. Only partial harvest was possible during 1982 because of high water level. The final harvest was in April-May, 1983. The yield obtained was 3640 kg during the culture period of about 20 months.
Resumo:
An experiment was carried out in the fields of the Agronomy Field Laboratory, Bangladesh Agricultural University, Mymensingh, Bangladesh to determine the impact of common carp (Cyprinus carpio) and tilapia (Oreochromis niloticus) culture on arthropod population, zoobenthos and weeds of rice field. The treatments were: (1) rice combined with mono sex tilapia, (2) rice combined with common carp, (3) rice combined with a mixed culture of mono sex tilapia and common carp and (4) rice alone. It was observed that tilapia significantly reduced the number of arthropods, green leafhoppers and white leafhoppers in the rice-fish production systems. Benthos analysis revealed significant effects of fish culture on the abundance of molluscs, oligochaete worms and chironomid larvae. Lowest number of benthos was obtained in the treatments with common carp and significant reduction of the weed biomass was observed, especially in the tilapia containing plots. Based on the results of the study it can be suggested that common carp may play an important role in controlling of benthic organisms, while tilapia might be more effective to control terrestrial arthropods and weeds.
Resumo:
A total of 234 species of fish have been recorded from the St Martin Island. Of which, 98 species are coral associated. The total number of recorded mollusc and crab species stands at 187 and 7 species respectively. A total of 66 coral species were recorded, of which 19 are fossil corals, 36 living corals and the rest are under 6 families of subclass Octocorallia (soft corals). A total of 14 species of algae have been recorded from the St. Martin's Island. There is an estimated amount of 1500 MT red sea weed biomass available around the St. Martin's Island. The island contains some of the most unique, benthic community associations in Bangladesh, not found anywhere else in the South Asian region. The unique marine communities have very high scientific value for research and monitoring and there are only a few examples worldwide, where coral-algal communities dominate rocky reefs. The economy of the island is based on fishing. It is estimated that, about 1650 MT of fish are caught annually. Over-exploitation of renewable marine and coastal resources (e.g., rocky reef fisheries, coral and shell extraction; removal of coastal vegetation from inter-tidal and sub-tidal habitats) is a major threat to this ecosystem. Destructive fishing practices, mainly the use of rock-weighted gill nets over the inshore boulder reefs is of prime aggravates. Proper implementation of the rules and regulation for Ecologically Critical Areas (ECA's), alternative livelihood for the local people and further research should be immediately taken for sustainable utilization and to save the rich biodiversity of the only coral island in Bangladesh.
Resumo:
Water hyacinth is a free-floating waterweed native to the Amazon River Basin in South America. In its native range, water hyacinth is not an environmental problem, although the weed is one of the most invasive alien plants in freshwater environments. Water hyacinth has the potential to become invasive through fast vegetative reproduction and rapid growth to accumulate huge biomass and extensive cover in freshwater environments. Over the last 150 years water hyacinth has invaded most countries in the tropics and sub-tropics, introduced by man, mainly for ornamental purposes. Such introductions led to the infestation of most freshwater-ways in the southern United States of America, parts of Australia, the pacific islands, and most countries in Asia and Africa. The extensive tightly packed mats of water hyacinth are often associated with devastating socio-economic and environmental impacts. Invasion by the weed has, therefore, often generated urgent costly problems associated with the weed biomass and its management. A classic example of such problems was triggered by the invasion and proliferation of water hyacinth in the Lake Victoria Basin during the 1980s (Freilink 1989, Taylor 1993, Twongo et al., 1995). The weed infestation marked the beginning of a decade of intensive and systematic campaign by the three riparian states (Kenya, Tanzania and Uganda) to bring weed proliferation under control. The discussions in this Chapter span over ten years of dealing with the challenges paused by the imperative to manage infestations of water hyacinth in the Lake Victoria Basin. The challenges included the need to understand the dynamics of water hyacinth infestation; its distribution, proliferation and impact modalities; and the development and implementation of appropriate weed control strategies and options. Most specific examples were taken from the Ugandan experience (NARO, 2002).
Resumo:
The rapid proliferation and extensive spread of water hyacinth Eichhornia crassipes (Mart) Solms in the highland lakes of the Nile Basin within less than 15 years of introduction into the basin in the 1980s pauses potential environmental and social economic menace if the noxious weed is not controlled soon. The water weed has spread all round Lake Victoria and, in Uganda where infes tation is mos t severe, water hyacinth estimated at 1,330,000 ton smothers over 2,000 ha of the lakeshore (August,1994). Lake Kyoga which already constantly supplies River Nile with the weed is infested with over 570 ha, while over 80% of the river course in Uganda is fringed on either side with an average width of about 5m of water hyacinth. As the impact of infestation with water hyacinth on water quality and availability, transportation by water, fishing activities, fisheries ecology, hydro-power generation etc becomes clear in Uganda, serious discussion is under way on how to control and manage the noxious weed. This paper pauses some of the questions being asked regarding the possible application of mechanical and chemical means to control the water weed.Uganda has already initiated the use of biological control of water hyacinth on Lake Kyoga with a strategy to use two weevils namely Neochetinabruchi and Neochetina eichhorniae. The strategy to build capacity and infrastructure for mass multiplication and deployment of biological control of the weevils in the field developed in Uganda by the Fisheries Research Insti tu te (FIRI) and the Namulonge Agricultural and Animal production Research Insti tute (NAARI) is proposed in outline for evaluation. Plans to deploy this strategy on lake Kyoga are under way