47 resultados para trap


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Catch rates from fishery-independent surveys often are assumed to vary in proportion to the actual abundance of a population, but this approach assumes that the catchability coefficient (q) is constant. When fish accumulate in a gear, the rate at which the gear catches fish can decline, and, as a result, catch asymptotes and q declines with longer fishing times. We used data from long-term trap surveys (1990–2011) in the southeastern U.S. Atlantic to determine whether traps saturated for 8 reef fish species because of the amount of time traps soaked or the level of fish accumulation (the total number of individuals of all fish species caught in a trap). We used a delta-generalized-additive model to relate the catch of each species to a variety of predictor variables to determine how catch was influenced by soak time and fish accumulation after accounting for variability in catch due to the other predictor variables in the model. We found evidence of trap saturation for all 8 reef fish species examined. Traps became saturated for most species across the range of soak times examined, but trap saturation occurred for 3 fish species because of fish accumulation levels in the trap. Our results indicate that, to infer relative abundance levels from catch data, future studies should standardize catch or catch rates with nonlinear regression models that incorporate soak time, fish accumulation, and any other predictor variable that may ultimately influence catch. Determination of the exact mechanisms that cause trap saturation is a critical need for accurate stock assessment, and our results indicate that these mechanisms may vary considerably among species.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The fishery for spiny lobster Panulirus argus in the Florida Keys National Marine Sanctuary is well chronicled, but little information is available on the prevalence of lost or abandoned lobster traps. In 2007, towed-diver surveys were used to identify and count pieces of trap debris and any other marine debris encountered. Trap debris density (debris incidences/ha) in historic trap-use zones and in representative benthic habitats was estimated. Trap debris was not proportionally distributed with fishing effort. Coral habitats had the greatest density of trap debris despite trap fishers’ reported avoidance of coral reefs while fishing. The accumulation of trap debris on coral emphasizes the role of wind in redistributing traps and trap debris in the sanctuary. We estimated that 85,548 ± 23,387 (mean ± SD) ghost traps and 1,056,127 ± 124,919 nonfishing traps or remnants of traps were present in the study area. Given the large numbers of traps in the fishery and the lack of effective measures for managing and controlling the loss of gear, the generation of trap debris will likely continue in proportion to the number of traps deployed in the fishery. Focused removal of submerged trap debris from especially vulnerable habitats such as reefs and hardbottom, where trap debris density is high, would mitigate key habitat issues but would not address ghost fishing or the cost of lost gear.