36 resultados para tooth, impacted
Resumo:
Hurricanes can cause extensive damage to the coastline and coastal communities due to wind-generated waves and storm surge. While extensive modeling efforts have been conducted regarding storm surge, there is far less information about the effects of waves on these communities and ecosystems as storms make landfall. This report describes a preliminary use of NCCOS’ WEMo (Wave Exposure Model; Fonseca and Malhotra 2010) to compute the wind wave exposure within an area of approximately 25 miles radius from Beaufort, North Carolina for estuarine waters encompassing Bogue Sound, Back Sound and Core Sound during three hurricane landfall scenarios. The wind wave heights and energy of a site was a computation based on wind speed, direction, fetch and local bathymetry. We used our local area (Beaufort, North Carolina) as a test bed for this product because it is frequently impacted by hurricanes and we had confidence in the bathymetry data. Our test bed conditions were based on two recent Hurricanes that strongly affected this area. First, we used hurricane Isabel which made landfall near Beaufort in September 2003. Two hurricane simulations were run first by passing hurricane Isabel along its actual path (east of Beaufort) and second by passing the same storm to the west of Beaufort to show the potential effect of the reversed wind field. We then simulated impacts by a hurricane (Ophelia) with a different landfall track, which occurred in September of 2005. The simulations produced a geographic description of wave heights revealing the changing wind and wave exposure of the region as a consequence of landfall location and storm intensity. This highly conservative simulation (water levels were that of low tide) revealed that many inhabited and developed shorelines would receive wind waves for prolonged periods of time at heights far above that found during even the top few percent of non-hurricane events. The simulations also provided a sense for how rapidly conditions could transition from moderate to highly threatening; wave heights were shown to far exceed normal conditions often long before the main body of the storm arrived and importantly, at many locations that could impede and endanger late-fleeing vessels seeking safe harbor. When joined with other factors, such as storm surge and event duration, we anticipate that the WEMo forecasting tool will have significant use by local emergency agencies and the public to anticipate the relative exposure of their property arising as a function of storm location and may also be used by resource managers to examine the effects of storms in a quantitative fashion on local living marine resources.
Resumo:
Small pelagic fish play a very important role in human nutrition and health. Lipids of these fish differ remarkably from plant and other animal lipids. The aim of the study was to describe the proximate composition of thirty-three small pelagic fish species commonly available in Sri Lanka. Fish species were collected from Negombo and Chillaw fish landing sites and subjected to analysis for moisture, ash, protein and total lipid content. Tiger tooth croaker (Otolithus ruber) was found to have the highest moisture percentage (80.0%) followed by Clarias sp. (78.9%), Indian anchovy (Steloporus indicus) and Comerson's anchovy (Stelophorus commersonii), (78%). The lowest percentage of moisture, 69.4%, was recorded in white sardinella (Sardinella albella). Indian ilisha (Ilisha melastoma) was found to have the highest amount of ash (10.1%) followed by Otolithus sp. (8%) and big-eye barracuda contained the least amount (2.5%). Carassius Carassius, pick handle barracuda (Sphyraena jello) and Indian mackerel (Rastrelliger kanagurta) contained higher amounts of protein, 24.3, 20.6 and 19.2% respectively. The lowest protein content (10.1%) was found in Indian scad (Decapterus russelli). The protein content of the fish was in the range of 13-15%. The results revealed that the small fish are moderate protein sources. The total lipid content varied between 0.6-8%. White sardinella recorded the highest percentage of lipid (8%) where tiger tooth croaker contained the lowest percentage (0.6 %). The study showed high fatty species to contain low amount of moisture and vice versa establishing an inverse relation between fat and moisture quantitatively.
Resumo:
The marine environment of Pakistan has been described in the context of three main regions : the Indus delta and its creek system, the Karachi coastal region, and the Balochistan coast. The creeks, contrary to concerns, do receive adequate discharges of freshwater. On site observations indicate that freshwater continues flowing into them during the lean water periods and dilutes the seawater there. A major factor for the loss of mangrove forests as well as ecological disturbances in the Indus delta is loss of the silt load resulting in erosion of its mudflats. The ecological disturbance has been aggravated by allowing camels to browse the mangroves. The tree branches and trunks, having been denuded of leaves are felled for firewood. Evidence is presented to show that while indiscriminate removal of its mangrove trees is responsible for the loss of large tracts of mangrove forests, overharvesting of fisheries resources has depleted the river of some valuable fishes that were available from the delta area. Municipal and industrial effluents discharged into the Lyari and Malir rivers and responsible for land-based pollution at the Karachi coast and the harbour. The following are the three major areas receiving land-based pollution and whose environmental conditions have been examined in detail: (l) the Manora channel, located on the estuary of the Lyari river and serving as the main harbour, has vast areas forming its western and eastern backwaters characterized by mud flats and mangroves. The discharge of industrial wastewater from the S.I.T.E. and municipal effluents from the northern and central districts into the Lyari has turned this river into an open drain. This, in turn, has caused a negative impact on the environment of the port, fish harbour, and the adjacent beaches. (2) The Gizri creek receives industrial and municipal effluents from the Malir river as well as from several industries and power stations. The highly degraded discharges from the Malir have negatively impacted the environment in this creek. (3) The coastline between the Manora channel and Gizri creek where the untreated municipal effluents are discharged by the southern districts of Karachi, is responsible for the degraded environment of the Chinna creek, and also of the beaches and the harbour. The Balochistan coast is relatively safe from land-based pollution, mainly because of the lack of industrial, urban or agricultural activity, except the Hingol river system where some agricultural activities have been initiated.
Resumo:
Nine different categories of stakeholders in shrimp farming industry ·were assessed to show the socioeconomic impact of shrimp farming in south-west Bangladesh. Among all the stakeholders the shrimp farmer's average own land was 4 ha whereas the seed collectors and faria's had lowest amount of average land, 0.1 and 0.5 ha respectively. The shrimp farming positively impacted to the livelihood of stakeholders. Income of the coastal people, sanitation, working facilities of women, employment, health condition and the literacy rate increased due to shrimp farming. On the other hand shrimp farming had negative impact on the rice production, livestock, drinking water supply, and social conflict and violence had increased due to shrimp farming. There were internal conflicts between different stakeholders; the farias conflict with the depot owners and shrimp farmers, marginal farmers' conflict with the rich shrimp farmers about leasing lands and saline water control, the rice farmers conflicts with the shrimp farmers about agricultural crop production.
Resumo:
The biological characteristics and population dynamisms of Sphyraena putnamae, were studied in the northern Persian Gulf and Oman Sea restricted to Hormuzgan province waters within 13 months period, from November 2006 up to November 2007. Biometrical and anatomical measurements were carried out, and biological surveys were conducted on 486 specimens. On the other hand, the growth and mortality parameters were estimated by using 3096 samples. These samples were collected from 3 landings, namely Bandar Abbas, Bandar Lengeh and Bandar Jask. The measurements of the minimum and maximum Fork lengths and weights were 11.7 to 8.03 cm and 135.0 to 4140.0 g, respectively. The results indicated that this species, having the Relative Length of Gut, RLG=0.34±0.002, is strongly carnivorous (often fish-eater), proven by the fact that more than 98% of its stomach contents were fish pieces. Examining the changes in the index of stomach emptiness by the percentage of CV = 0.47% indicates that this fish is Moderate feeder. The level of feeding increased in March, before spawning and decreased in June and September, simultaneously with the spawning season. There are 2 peaks of reproduction or spawning seasons during the months of April-May and September, of which the prior is assumed as the main spawning. The sex ratio (M:F) was calculated 0.5:1.0(X2 =2.11), which did not show a significant difference with expected level of 1:1 (P>0.05). The average absolute and relative reproduction rates of Sphyraena putnamae is respectively as follows: 1866827.1±255448.9 and 1097.7±94.3. The highest and the lowest diameter of matured egg are from 200 to 750 μ, and its average diameter is 402.10 ± 0.190 μ. A parameter for Saw-tooth barracuda length measurement, Lm50, based on the Fork-length, was calculated as 54.01 cm. In other words, as far as the fisheries management is concerned, the fish whose lengths are less than 54.01 cm should not be caught. The calculated level of (R2) (correlations of total length & weight), indicated strong correlations between length and weight of this fish, and the obtained formula included W =0.007100 FL 2.9295 and reinforced this assumption. The “K” Index for this fish in 3 above mentioned landings (Jask, Bandar-Abbas and Bandar-Length) were 1.24, 0.37 and 0.46 per year, respectively and the FL index for the same landings were estimated as 129, 110 and 134 cm, respectively. The growth coefficient (MONRO) for the above mentioned regions were calculated as 3.601, 3.647 and 3.917, respectively; and in the surveyed regions there were no significant differences in populations. The Total mortality coefficient (Z) was calculated 0.76, 1.12 and 1.07 per year, the Natural mortality coefficient was 0.46, 0.63 and 0.70, and the Fishing mortality coefficient (rate) (F) was found to be 0.30, 0.49 and 0.37 per year. The value of the exploitation rate (E) is equal to 0.39 per year, indicating that this species is an under-exploited resource, and there is no excessive fishing pressure on the fish supply of this species in the afore-said regions. The highest level of exploitation was found for ‘Bandar Abbas’ fishing region and the lowest level of exploitation is in ‘Bandar Lengeh’ waters.
Resumo:
Over the past 50 years, economic and technological developments have dramatically increased the human contribution to ambient noise in the ocean. The dominant frequencies of most human-made noise in the ocean is in the low-frequency range (defined as sound energy below 1000Hz), and low-frequency sound (LFS) may travel great distances in the ocean due to the unique propagation characteristics of the deep ocean (Munk et al. 1989). For example, in the Northern Hemisphere oceans low-frequency ambient noise levels have increased by as much as 10 dB during the period from 1950 to 1975 (Urick 1986; review by NRC 1994). Shipping is the overwhelmingly dominant source of low-frequency manmade noise in the ocean, but other sources of manmade LFS including sounds from oil and gas industrial development and production activities (seismic exploration, construction work, drilling, production platforms), and scientific research (e.g., acoustic tomography and thermography, underwater communication). The SURTASS LFA system is an additional source of human-produced LFS in the ocean, contributing sound energy in the 100-500 Hz band. When considering a document that addresses the potential effects of a low-frequency sound source on the marine environment, it is important to focus upon those species that are the most likely to be affected. Important criteria are: 1) the physics of sound as it relates to biological organisms; 2) the nature of the exposure (i.e. duration, frequency, and intensity); and 3) the geographic region in which the sound source will be operated (which, when considered with the distribution of the organisms will determine which species will be exposed). The goal in this section of the LFA/EIS is to examine the status, distribution, abundance, reproduction, foraging behavior, vocal behavior, and known impacts of human activity of those species may be impacted by LFA operations. To focus our efforts, we have examined species that may be physically affected and are found in the region where the LFA source will be operated. The large-scale geographic location of species in relation to the sound source can be determined from the distribution of each species. However, the physical ability for the organism to be impacted depends upon the nature of the sound source (i.e. explosive, impulsive, or non-impulsive); and the acoustic properties of the medium (i.e. seawater) and the organism. Non-impulsive sound is comprised of the movement of particles in a medium. Motion is imparted by a vibrating object (diaphragm of a speaker, vocal chords, etc.). Due to the proximity of the particles in the medium, this motion is transmitted from particle to particle in waves away from the sound source. Because the particle motion is along the same axis as the propagating wave, the waves are longitudinal. Particles move away from then back towards the vibrating source, creating areas of compression (high pressure) and areas of rarefaction (low pressure). As the motion is transferred from one particle to the next, the sound propagates away from the sound source. Wavelength is the distance from one pressure peak to the next. Frequency is the number of waves passing per unit time (Hz). Sound velocity (not to be confused with particle velocity) is the impedance is loosely equivalent to the resistance of a medium to the passage of sound waves (technically it is the ratio of acoustic pressure to particle velocity). A high impedance means that acoustic particle velocity is small for a given pressure (low impedance the opposite). When a sound strikes a boundary between media of different impedances, both reflection and refraction, and a transfer of energy can occur. The intensity of the reflection is a function of the intensity of the sound wave and the impedances of the two media. Two key factors in determining the potential for damage due to a sound source are the intensity of the sound wave and the impedance difference between the two media (impedance mis-match). The bodies of the vast majority of organisms in the ocean (particularly phytoplankton and zooplankton) have similar sound impedence values to that of seawater. As a result, the potential for sound damage is low; organisms are effectively transparent to the sound – it passes through them without transferring damage-causing energy. Due to the considerations above, we have undertaken a detailed analysis of species which met the following criteria: 1) Is the species capable of being physically affected by LFS? Are acoustic impedence mis-matches large enough to enable LFS to have a physical affect or allow the species to sense LFS? 2) Does the proposed SURTASS LFA geographical sphere of acoustic influence overlap the distribution of the species? Species that did not meet the above criteria were excluded from consideration. For example, phytoplankton and zooplankton species lack acoustic impedance mis-matches at low frequencies to expect them to be physically affected SURTASS LFA. Vertebrates are the organisms that fit these criteria and we have accordingly focused our analysis of the affected environment on these vertebrate groups in the world’s oceans: fishes, reptiles, seabirds, pinnipeds, cetaceans, pinnipeds, mustelids, sirenians (Table 1).