47 resultados para riparian restoration
Resumo:
In this report we analyze the Topic 5 report’s recommendations for reducing nitrogen losses to the Gulf of Mexico (Mitsch et al. 1999). We indicate the relative costs and cost-effectiveness of different control measures, and potential benefits within the Mississippi River Basin. For major nonpoint sources, such as agriculture, we examine both national and basin costs and benefits. Based on the Topic 2 economic analysis (Diaz and Solow 1999), the direct measurable dollar benefits to Gulf fisheries of reducing nitrogen loads from the Mississippi River Basin are very limited at best. Although restoring the ecological communities in the Gulf may be significant over the long term, we do not currently have information available to estimate the benefits of such measures to restore the Gulf’s long-term health. For these reasons, we assume that measures to reduce nitrogen losses to the Gulf will ultimately prove beneficial, and we concentrate on analyzing the cost-effectiveness of alternative reduction strategies. We recognize that important public decisions are seldom made on the basis of strict benefit–cost analysis, especially when complete benefits cannot be estimated. We look at different approaches and different levels of these approaches to identify those that are cost-effective and those that have limited undesirable secondary effects, such as reduced exports, which may result in lost market share. We concentrate on the measures highlighted in the Topic 5 report, and also are guided by the source identification information in the Topic 3 report (Goolsby et al. 1999). Nonpoint sources that are responsible for the bulk of the nitrogen receive most of our attention. We consider restrictions on nitrogen fertilizer levels, and restoration of wetlands and riparian buffers for denitrification. We also examine giving more emphasis to nitrogen control in regions contributing a greater share of the nitrogen load.
Resumo:
Seagrass ecosystems are protected under the federal "no-net-loss" policy for wetlands and form one of the most productive plant communities on the planet, performing important ecological functions. Seagrass beds have been recognized as a valuable resource critical to the health and function of coastal waters. Greater awareness and public education, however, is essential for conservation of this resource. Tremendous losses of this habitat have occurred as a result of development within the coastal zone. Disturbances usually kill seagrasses rapidly, and recovery is often comparatively slow. Mitigation to compensate for destruction of existing habitat usually follows when the agent of loss and responsible party are known. Compensation assumes that ecosystems can be made to order and, in essence, trades existing functional habitat for the promise of replacement habitat. While ~lant ingse agrass is not technically complex, there is no easy way to meet the goal of maintaining or increasing seagrass acreage. Rather, the entire process of planning, planting and monitoring requires attention to detail and does not lend itself to oversimplification.
Resumo:
There is nothing mysterious about how coastal rivers, their estuaries, and their relationship with the sea all work to satisfy many of our greatest needs, including drinkable water, fish and shellfish, and soils essential for sustaining the production of food and fiber. Nor are the methods that have proved successful in the protection and restoration of watershed health difficult to understand. It is difficult, however, to imagine how we are to survive without healthy watersheds. Each watershed along California’s coast shows signs of increasing abuse from road construction and maintenance, livestock grazing, residential development, timber harvesting, and a dozen other human activities. In some cases whole streams have simply been wiped away. This document has been created to guide and support every person in the community, from homemaker to elected official, who wants her or his watershed to provide clean water, harvestable fish resources and other proof that life in the watershed cannot only be maintained but also enjoyed. It is based on years of experience with watershed protection and restoration in California. If citizen involvement is to be effective, it must draw not only on scientific knowledge but also on an understanding of how to translate individual views into commitments and capable group action. This guide briefly reviews the condition of California’s coastal watersheds, identifies the kinds of concerns that have led citizens to successful watershed protection efforts, explains why citizen, in addition to government, effort is essential for watershed protection and restoration to succeed, and puts in the reader’s hands both the technical and organizational “tools of the trade” in the hope that those who use this guide will be encouraged to join in efforts to make their watershed serve this and future generations better.
Resumo:
This synthesis presents a science overview of the major forest management Issues involved in the recovery of anadromous salmonids affected by timber harvest in the Pacific Northwest and Alaska. The issues involve the components of ecosystem-based watershed management and how best to implement them, including how to: Design buffer zones to protect fish habitat while enabling economic timber production; Implement effective Best Management Practices (BMPs) to prevent nonpoint-source pollution; Develop watershed-level procedures across property boundaries to prevent cumulative impacts; Develop restoration procedures to contribute to recovery of ecosystem processes; and Enlist support of private landowners in watershed planning, protection, and restoration. Buffer zones, BMPs, cumulative impact prevention, and restoration are essential elements of what must be a comprehensive approach to habitat protection and restoration applied at the watershed level within a larger context of resource concerns in the river basin, species status under the Endangered Species Act (ESA), and regional environmental and economic issues (Fig. ES. 1). This synthesis 1) reviews salmonid habitat requirements and potential effects of logging; 2) describes the technical foundation of forest practices and restoration; 3) analyzes current federal and non-federal forest practices; and 4) recommends required elements of comprehensive watershed management for recovery of anadromous salmonids.
Resumo:
Extensive losses of coastal wetlands in the United States caused by sea-level rise, land subsidence, erosion, and coastal development have increased hterest in the creation of salt marshes within estuaries. Smooth cordgrass Spartina altemiflora is the species utilized most for salt marsh creation and restoration throughout the Atlantic and Gulf coasts of the U.S., while S. foliosa and Salicomia virginica are often used in California. Salt marshes have many valuable functions such as protecting shorelines from erosion, stabilizing deposits of dredged material, dampening flood effects, trapping water-born sediments, serving as nutrient reservoirs, acting as tertiary water treatment systems to rid coastal waters of contaminants, serving as nurseries for many juvenile fish and shellfish species, and serving as habitat for various wildlife species (Kusler and Kentula 1989). The establishment of vegetation in itself is generally sufficient to provide the functions of erosion control, substrate stabilization, and sediment trapping. The development of other salt marsh functions, however, is more difficult to assess. For example, natural estuarine salt marshes support a wide variety of fish and shellfish, and the abundance of coastal marshes has been correlated with fisheries landings (Turner 1977, Boesch and Turner 1984). Marshes function for aquatic species by providing breeding areas, refuges from predation, and rich feeding grounds (Zimmerman and Minello 1984, Boesch and Turner 1984, Kneib 1984, 1987, Minello and Zimmerman 1991). However, the relative value of created marshes versus that of natural marshes for estuarine animals has been questioned (Carnmen 1976, Race and Christie 1982, Broome 1989, Pacific Estuarine Research Laboratory 1990, LaSalle et al. 1991, Minello and Zimmerman 1992, Zedler 1993). Restoration of all salt marsh functions is necessary to prevent habitat creation and restoration activities from having a negative impact on coastal ecosystems.
Resumo:
Guánica Bay is a major estuary on the southwest coast of Puerto Rico. Significant coral reef ecosystems are present outside the bay. These valuable habitats may be impacted by transport of sediments, nutrients and contaminants from the watershed, through the bay and into the offshore waters. The National Oceanic and Atmospheric Administration’s (NOAA) National Centers for Coastal Ocean Science (NCCOS), in consultation with local and regional experts, conducted an interdisciplinary assessment of coral reef ecosystems, contaminants, sedimentation rates and nutrient distribution patterns in and around Guánica Bay. This work was conducted using many of the same protocols as ongoing monitoring work underway elsewhere in the U.S. Caribbean and has enabled comparisons among coral reef ecosystems between this study and other locations in the region. This characterization of Guánica marine ecosystems establishes benchmark conditions that can be used for comparative documentation of future change, including possible negative outcomes due to future land use change, or improvement in environmental conditions arising from management actions. This report is organized into six chapters that represent a suite of interrelated studies. Chapter 1 provides a short introduction to the study area. Chapter 2 is focused on biogeographic assessments and benthic mapping of the study area, including new surveys of fish, marine debris and reef communities on hardbottom habitats in the study area. Chapter 3 quantifies the distribution and magnitude of a suite of contaminants (e.g., heavy metals, PAHs, PCBs, pesticides) in both surface sediments and coral tissues. Chapter 4 presents results of sedimentation measurements in and outside of the bay. Chapter 5 examines the distribution of nutrients in in the bay, offshore from the bay and in the watershed. Chapter 6 is a brief summary discussion that highlights key findings of the entire suite of studies.
Resumo:
This report provides baseline biological data on fishes, corals and habitats in Coral and Fish Bays, St. John, USVI. A similar report with data on nutrients and contaminants in the same bays is planned to be completed in 2013. Data from NOAA’s long-term Caribbean Coral Reef Ecosystem Monitoring program was compiled to provide a baseline assessment of corals, fishes and habitats from 2001 to 2010, data needed to assess the impacts of erosion control projects installed from 2010 to 2011. The baseline data supplement other information collected as part of the USVI Watershed Stabilization Project, a project funded by the American Recovery and Reinvestment Act of 2009 and distributed through the NOAA Restoration Center, but uses data which is not within the scope of ARRA funded work. We present data on 16 ecological indicators of fishes, corals and habitats. These indicators were chosen because of their sensitivity to changes in water quality noted in the scientific literature (e.g., Rogers 1990, Larsen and Webb 2009). We report long-term averages and corresponding standard errors, plot annual averages, map indicator values and list inventories of coral and fish species identified among surveys. Similar data will be needed in the future to make rigorous comparisons and determine the magnitude of any impacts from watershed stabilization.
Resumo:
Ecologic researchers are modeling the impact of vessel grounding to seagrass beds using GIS in the Florida Keys National Marine Sanctuary. The surface creation tools in the ArcGIS 3D Analyst extension help assess both the damage and recovery of these seagrass beds.
Resumo:
Schizothorax zarudnvi, is an endemic fish of east country waters. (Triple lagoons of Hamoon and relevant water resources) that in the world it is reported in this resource specially. This fish named Hamoon mahi is one of the most economically valuable species in this region. Because of the recent years droughts, Hamoon logoon has been drive since 2000. Also, semi-wells (a semi natural resource) were affected drastically by recent drought years and their volume reduced to nearly one third of their real volume and resulted in changing at growth and reproduction physiology process in Schizothorax zanidnyi, brood stocks. Beginning of this project was done from October 2003. It's field studies begun (brood catching) since November 2001 by two methods including entangling gairs and at semi wells of Sistan that (Beach seine) had maximum rate of preparing qualified brood stocks. Broods transferred to Cyprinidea reproduction work shop of Zahak and after taking primary measures they stored in to the edaphic pools. Increasing the success safety factor (coefficient) for artificial reproduction of Sthizothorax zarudnyi , identifying the appropriate tune for Hormonal acceptance (physiological preparation of broods) is needed , so this important work was done regularly by histological studies and GSI measurements since November. Highest GSI rates of females (%80.51) and highest IV stage abundance of sexual maturity (%l 00) were observed an march. On the base of this date, Hormone therapy was done on broods on march. The used hormones are as follows Hypophysis. extraction, GnRHa and Anti Dopamin at the dozes of 3-6 ml, 20-30kg and 10-15 ml per kg body weight respectively and 2-3 times from 11-12-80 they were injected. Injected broods kept in to two circumstances, flow-through (rounded pool) and stagnant systems. In stagnant system 14 and 19 individuals of female and male (Schizothorax zauiulnri) broods, respectively injected in 11th, 15111, 19th, and 24th of march 1380. Non of the injected broods in 11 and 15 and 19th march (in stagnant Condition) answered to Hormone therapy. After final injection broods had general less activity and a few of them died. Mean temperature of brood pond waters (daily) which were injected. Fluctuated between 10-25-13. 63°c but injected broods on 24th march had different characteristics. They had pale color and had few fecundity. In this stage of injection they hadn't any successful vulation. After injection, Mean daily water temperature was 15, 88-17, 54°c. In Flowing system, 13-16 individual of males and females respectively were injected on 15th, 19th, 22th and 23th march. None of injected producers on 15th and 19th march with mean daily water temperature of 10, 25-12°c were prepared for spawning but injected producers on 22nd an 23th march with mean daily water temperature of 13.5-1 rc responded about 75-100 percent. (Schizothorax zarudnyi) brood stocks were prepared for spawning after 353-428 hours/day from final injection. Diameter of obtained eggs (before fertilization) was between 1.9-2.3 min and of fertilized eggs was 3.8mm. Fertilized eggs of (Schizothorax zarudnyi) were hatched after 6-7 days with mean water temperature of 17.08°c. Mean length of on one day larvae was 9.47 mm. Larvae was 9.47 mm. Larvae adsorbed the whole yolk sac after , 5-6 days at 17- 1°c and were prepared for releasing in to edaphic pools. Because of the lack of necessary and complementary facilities in the region , they had to release them in to veniros and growing them for 8 days. At the end of 18th day , 35000 larvae (at first) released into an edaphic pond with a volume of 150m2. After growing them for one moth , mean length and weight of new hatched larvae was 29.41 mm and 1.12►r , respectively. With respect to results of this investigation , artificial reproduction of (Schizothorax zarudnyi) Can be possible at 14-17°C and flowing water with Hormonal treatment. It -s breeding has increased development than other cultural specious in the region. Due to high economical value of this specious in Sistan and ti-s specialization east waters of Iran and having high resistance and proper growth There is a need of it's development and reproduction and culture in fish culture fanns (edaphic ponds• two-purpose pools) at the region and country.