34 resultados para representational overlap
Resumo:
The impact of chapila (Gudusia chapra) on the growth of carps was determined through introducing the fish in polyculture. A net average production with and without chapila were obtained at 467.11 and 889.54 kg/ha respectively (P
Resumo:
Intra-and interspecific virtual niche measures and feeding strategies of Barbodes gonionotus and Oreochromis spp. were studied from a rice field in Bangladesh. Appropriateness and ease of interpretation of different indices were evaluated. Small sizes of both species had a relatively wider dietary breadth and used many of the resource categories available to them than the large size groups, though none were generalist feeder. The dietary overlap of large B. gonionotus on the small was greater than the reverse, but biologically insignificant. While the dietary overlap of large Oreochromis spp. on the small was significantly greater. Interspecific dietary width was relatively broader for B. gonionotus than Oreochromis spp. and overlap of B. gonionotus on Oreochromis spp. was significantly greater than the reverse. Evidence of significant intraspecific dietary overlap between the two sizes of tilapia reflects strong competition and cautions for mixed-size stocking in rice-fish system. Besides, there seem fewer opportunities for habitat segregation between B. gonionotus and Oreochromis spp., due to the significant interspecific dietary overlap of the former on the latter in rice-fish system. Tilapia specialized on periphytic detrital aggregate while silver barb tended to consume aquatic macrophytes and molluscs. Small sizes of B. gonionotus should be preferred for rice-fish integration over the Oreochromis spp. due to their broader niche width and pronounced ontogenetic dietary shifts with the aging of the stock.
Resumo:
A trophic study was carried out in February of 2012 to January 2013 on the ecosystem in the Persian Gulf, Bushehr provience. A total of 2,948 samples of stomach contents were analyzed based on the weight and number of food items and were identified about 40 preys. Crustacean and bony fish were as a main prey in most of the stomach contents . The mean average trophic level was estimated at 3.6 by Ecopath software. In this research, the mean level were studied between eight species varied from 3.47 to 4.61, Saurida tumbil occupy the highest and the Argyrops spinifer was the lowest level. The ranges of total mortality varied from 0.7 to 3.05 per years. The food consumption rate was estimated about 69.82 per year. The overlap index showed that the prey items such as fish, crustacean, bivalve and echinoderm were shared about 65, 15, 15 and 6 percent in all stomach of individual in respectively. Mixed trophic analysis indicates that benthos have a positive effect on most of the fish species. Most species have a negative impact on themselves, interpreted here as reflecting increased with in group competition for resources. This preliminary model can be helpful to determine the gaps in the present knowledge about demersal system of the Persian Gulf.
Resumo:
Over the past 50 years, economic and technological developments have dramatically increased the human contribution to ambient noise in the ocean. The dominant frequencies of most human-made noise in the ocean is in the low-frequency range (defined as sound energy below 1000Hz), and low-frequency sound (LFS) may travel great distances in the ocean due to the unique propagation characteristics of the deep ocean (Munk et al. 1989). For example, in the Northern Hemisphere oceans low-frequency ambient noise levels have increased by as much as 10 dB during the period from 1950 to 1975 (Urick 1986; review by NRC 1994). Shipping is the overwhelmingly dominant source of low-frequency manmade noise in the ocean, but other sources of manmade LFS including sounds from oil and gas industrial development and production activities (seismic exploration, construction work, drilling, production platforms), and scientific research (e.g., acoustic tomography and thermography, underwater communication). The SURTASS LFA system is an additional source of human-produced LFS in the ocean, contributing sound energy in the 100-500 Hz band. When considering a document that addresses the potential effects of a low-frequency sound source on the marine environment, it is important to focus upon those species that are the most likely to be affected. Important criteria are: 1) the physics of sound as it relates to biological organisms; 2) the nature of the exposure (i.e. duration, frequency, and intensity); and 3) the geographic region in which the sound source will be operated (which, when considered with the distribution of the organisms will determine which species will be exposed). The goal in this section of the LFA/EIS is to examine the status, distribution, abundance, reproduction, foraging behavior, vocal behavior, and known impacts of human activity of those species may be impacted by LFA operations. To focus our efforts, we have examined species that may be physically affected and are found in the region where the LFA source will be operated. The large-scale geographic location of species in relation to the sound source can be determined from the distribution of each species. However, the physical ability for the organism to be impacted depends upon the nature of the sound source (i.e. explosive, impulsive, or non-impulsive); and the acoustic properties of the medium (i.e. seawater) and the organism. Non-impulsive sound is comprised of the movement of particles in a medium. Motion is imparted by a vibrating object (diaphragm of a speaker, vocal chords, etc.). Due to the proximity of the particles in the medium, this motion is transmitted from particle to particle in waves away from the sound source. Because the particle motion is along the same axis as the propagating wave, the waves are longitudinal. Particles move away from then back towards the vibrating source, creating areas of compression (high pressure) and areas of rarefaction (low pressure). As the motion is transferred from one particle to the next, the sound propagates away from the sound source. Wavelength is the distance from one pressure peak to the next. Frequency is the number of waves passing per unit time (Hz). Sound velocity (not to be confused with particle velocity) is the impedance is loosely equivalent to the resistance of a medium to the passage of sound waves (technically it is the ratio of acoustic pressure to particle velocity). A high impedance means that acoustic particle velocity is small for a given pressure (low impedance the opposite). When a sound strikes a boundary between media of different impedances, both reflection and refraction, and a transfer of energy can occur. The intensity of the reflection is a function of the intensity of the sound wave and the impedances of the two media. Two key factors in determining the potential for damage due to a sound source are the intensity of the sound wave and the impedance difference between the two media (impedance mis-match). The bodies of the vast majority of organisms in the ocean (particularly phytoplankton and zooplankton) have similar sound impedence values to that of seawater. As a result, the potential for sound damage is low; organisms are effectively transparent to the sound – it passes through them without transferring damage-causing energy. Due to the considerations above, we have undertaken a detailed analysis of species which met the following criteria: 1) Is the species capable of being physically affected by LFS? Are acoustic impedence mis-matches large enough to enable LFS to have a physical affect or allow the species to sense LFS? 2) Does the proposed SURTASS LFA geographical sphere of acoustic influence overlap the distribution of the species? Species that did not meet the above criteria were excluded from consideration. For example, phytoplankton and zooplankton species lack acoustic impedance mis-matches at low frequencies to expect them to be physically affected SURTASS LFA. Vertebrates are the organisms that fit these criteria and we have accordingly focused our analysis of the affected environment on these vertebrate groups in the world’s oceans: fishes, reptiles, seabirds, pinnipeds, cetaceans, pinnipeds, mustelids, sirenians (Table 1).