36 resultados para population model


Relevância:

30.00% 30.00%

Publicador:

Resumo:

As the global population has increased, so have human influences on the global environment. ... How can we better understand and predict these natural and potential anthropogenic variations? One way is to develop a model that can accurately describe all the components of the hydrologic cycle, rather than just the end result variables such as precipitation and soil moisture. If we can predict and simulate variations in evaporation and moisture convergence, as well as precipitation, then we will have greater confidence in our ability to at least model precipitation variations. Therefore, we describe here just how well we can model relevant aspects of the global hydrologic cycle. In particular, we determine how well we can model the annual and seasonal mean global precipitation, evaporation, and atmospheric water vapor transport.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The annual instantaneous total mortality coefficient (Z) for the prawn Metapenaeus dobsoni has been estimated to range from 0.8 to 5.14 by the cumulative catch curve method. Different methods used in the study resulted in wide ranging values of natural mortality (M) (0.6 to 2.303), but the yield per recruit model when superimposed with the absolute yield values revealed the right order to be > 2. The biologically optimum yield of about 18 thousand tons is obtained for an effort of 2,702 trawlers per day for 215 fishing days when the annual exploitation ratio (E) is about 52%.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A feeding strategy model is proposed using stomach content and resource availability data as a modification to Costello (1990) and Amundsen et al. (1996). Incorporation of feeding electivity index (E) instead of the prey-specific abundance signifies the importance of resource availability in prey selection as well as the predator's ability to specialize, generalize or avoid particular prey items at the individual and population level.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Caspian Sea has gone under a lot of changes due to human influences and the unwanted presence of a ctenophora Menomiopsis leidyi which has greatly changed the structure of planktons in the last recent years. Therefore, this study was carried out in order to determine these changes in the zooplankton community. the Sampling was done in 8 transacts in Astara, Anzali, Sefidrood, Tonekaboun, Noushahr, Babolsar, Amirabad and Bandar Torkaman coastal waters at 5 different depths including 5, 10, 20, 50 and 100 m. Sampling was carried out in four seasons of spring, summer, autumn and winter during 2008, 2009 and 2010 on board of R/V Gilan. Altogether, 12 species of zooplankton were identified in 2008, 22 species in 2009 and 14 species in 2010. The zooplankton included four groups: copepoda (4 species), cladocera (8species), rotatoria (10 species) and protozoa (2 species).The increase of diversity in 2009 was due to cladocera and rotatoria groups. The abundance of zooplankton in the spring was 5074 + 7807 ind/m3 more than other season in 2008. The abundance of copepoda in the summer reached the highest value of 3332 ind/m3 and since autumn the abundance gradually decreases and in the winter reached to the lowest value. The most abundance of cladocera was 797 ind/m3 in winter and decreased in summer and autumn. The abundance of rotatoria was 2189 ind/m3 in winter. rotifera and copepoda consisted the main population of Zooplanktons in the winter. The results of 2009 and 2010 showed that the abundance of zooplankton in winter was 2.6 fold of autumn, 1.6 fold of summer and 1.1 fold (1/9 fold in 2010)of spring. After increasing increased of temperature, phytoplankton, and zooplankton in summer, M.leidyi increased too. In the autumn M. leidyi reached to the highest rate and decreased zooplankton. The maximum population of zooplankton was in the layer 0-20 m and in the layer more than 20 meters, the abundance of zooplankton decreased very much. In 216 2008, 2009 and 2010, the abundance of zooplankton was 87, 77 and 77 percent in the layer 0-20 m respectively. In this study, the thermocline was observed in the layer 10 – 20 meters in the spring, that formed a thin layer but in the summer it was in the layer 20 to 50 meters. Temperature decreased between 11 to 15 oC in this layer. The variation of temperature between surfaces to bottom was 10 to 13 oC in spring, 19 to 21 in summer, about 9 oC in autumn and maximum 3 oC in winter. The most biomass of zooplankton was in the west. The biomass of zooplankton in central west and east of Southern of Caspian Sea was 54 %, 22 % and 24 % respectively in 2008, in 2009 was 48%, 33% and 20% respectively and in 2010 was 54 %, 29 % and 16 % respectively .The biomass decreased from west to east. The model of zooplankton designed by principal component analysis (PCA)and linear regression for Southern of Caspian Sea.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The study's aim was to develop and ecosystem model of the Bay of Bengal built with Ecopath and Ecoism software.The Ecopath model was built to represent 1978 and synthesise available population dynamics and fisheries data. A preliminary Ecoism was set up to explore interactions between functional groups and the impact of fishing.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The study's aim was to develop and ecosystem model of the Bay of Bengal built with Ecopath and Ecoism software.The Ecopath model was built to represent 1978 and synthesise available population dynamics and fisheries data. A preliminary Ecoism was set up to explore interactions between functional groups and the impact of fishing.