38 resultados para miami
Resumo:
A two year, comprehensive, quantitative investigation was conducted to analyze and identify the spatial distribution of petrogenic and biogenic hydrocarbons in sediments, surface waters, fish and shellfish of Biscayne Bay, Florida. The goal for the first year of the project was to establish baseline information to support oil spill impact assessment and clean-up. One hundred fifty-five sediment and eleven biota samples were collected. The areas sampled included the Miami River, Intracoastal Waterway, tidal flats, access canals and environmentally sensitive shorelines. The second year of the study centered on areas exhibiting petroleum contamination. These areas included the Miami River, Little River, Goulds Canal, Black Creek and Military Canal. Surface and subsurface sediment, biota and surface water were collected. Sample collection, analyses, and data handling for the two year project were conducted so that all information was court-competent and scientifically accurate. Chain of custody was maintained for all samples. Total hydrocarbon content of surface sediments ranged from below detection limits to a high of 2663.44 pg/g. Several sample stations contained petroleum contamination. The majority of biota samples exhibited hydrocarbon concentrations and characteristics that indicated little, if any, petroleum contamination. Surface water samples ranged from 0.78 to 64.47 μg/L and several samples contained petroleum hydrocarbons. Our results indicate several areas of petroleum contamination. These areas are characterized by industrial complexes, port facilities, marinas, major boating routes and many of the major tributaries emptying into Biscayne Bay.
Resumo:
The overall goal of the MARine and Estuarine goal Setting (MARES) project for South Florida is “to reach a science-based consensus about the defining characteristics and fundamental regulating processes of a South Florida coastal marine ecosystem that is both sustainable and capable of providing the diverse ecosystem services upon which our society depends.” Through participation in a systematic process of reaching such a consensus, science can contribute more directly and effectively to the critical decisions being made by both policy makers and by natural resource and environmental management agencies. The document that follows briefly describes the MARES project and this systematic process. It then describes in considerable detail the resulting output from the first two steps in the process, the development of conceptual diagrams and an Integrated Conceptual Ecosystem Model (ICEM) for the first subregion to be addressed by MARES, the Florida Keys/Dry Tortugas (FK/DT). What follows with regard to the FK/DT is the input received from more than 60 scientists, agency resource managers, and representatives of environmental organizations beginning with a workshop held December 9-10, 2009 at Florida International University in Miami, Florida.
Resumo:
The overall goal of the MARES (MARine and Estuarine goal Setting) project for South Florida is “to reach a science-based consensus about the defining characteristics and fundamental regulating processes of a South Florida coastal marine ecosystem that is both sustainable and capable of providing the diverse ecosystem services upon which our society depends.” Through participation in a systematic process of reaching such a consensus, science can contribute more directly and effectively to the critical decisions being made both by policy makers and by natural resource and environmental management agencies. The document that follows briefly describes MARES overall and this systematic process. It then describes in considerable detail the resulting output from the first step in the process, the development of an Integrated Conceptual Ecosystem Model (ICEM) for the third subregion to be addressed by MARES, the Southeast Florida Coast (SEFC). What follows with regard to the SEFC relies upon the input received from more than 60 scientists, agency resource managers, and representatives of environmental organizations during workshops held throughout 2009–2012 in South Florida.
Resumo:
The overall goal of the MARine and Estuarine goal Setting (MARES) project for South Florida is “to reach a science-based consensus about the defining characteristics and fundamental regulating processes of a South Florida coastal marine ecosystem that is both sustainable and capable of providing the diverse ecosystem services upon which our society depends.” Through participation in a systematic process of reaching such a consensus, science can contribute more directly and effectively to the critical decisions being made by both policy makers and by natural resource and environmental management agencies. The document that follows briefly describes the MARES project and this systematic process. It then describes in considerable detail the resulting output from the first two steps in the process, the development of conceptual diagrams and an Integrated Conceptual Ecosystem Model (ICEM) for the second subregion to be addressed by MARES, the Southwest Florida Shelf (SWFS). What follows with regard to the SWFS is the input received from more than 60 scientists, agency resource managers, and representatives of environmental organizations beginning with a workshop held August 19-20, 2010 at Florida Gulf Coast University in Fort Myers, Florida.
Resumo:
A study was initiated with field work in May 2007 to assess the status of ecological condition and stressor impacts throughout the U.S. continental shelf off South Florida, focusing on soft-bottom habitats, and to provide this information as a baseline for evaluating future changes due to natural or human-induced disturbances. The boundaries of the study region extended from Anclote Key on the western coast of Florida to West Palm Beach on the eastern coast of Florida, inclusive of the Florida Keys National Marine Sanctuary (FKNMS), and from navigable depths along the shoreline seaward to the shelf break (~100m). The study incorporated standard methods and indicators applied in previous national coastal monitoring programs — U.S. Environmental Protection Agency’s (EPA) Environmental Monitoring and Assessment Program (EMAP) and National Coastal Assessment (NCA) — including multiple measures of water quality, sediment quality, and biological condition. Synoptic sampling of the various indicators provided an integrative weight-of-evidence approach to assessing condition at each station and a basis for examining potential associations between presence of stressors and biological responses. A probabilistic sampling design, which included 50 stations distributed randomly throughout the region, was used to provide a basis for estimating the spatial extent of condition relative to the various measured indicators and corresponding assessment endpoints (where available). The study was conducted through a large cooperative effort by National Oceanic and Atmospheric Administration (NOAA)/National Centers for Coastal Ocean Science (NCCOS), EPA, U.S. Geological Survey (USGS), NOAA/Oceanic and Atmospheric Research (OAR)/Atlantic Oceanographic and Meteorological Laboratory in Miami, FKNMS, and the Florida Fish and Wildlife Conservation Commission (FWC). The majority of the South Florida shelf had high levels of dissolved oxygen (DO) in near-bottom water (> 5 mg L-1) indicative of “good” water quality.. DO levels in bottom waters exceeded this upper threshold at 98.8% throughout the coastal-ocean survey area. Only 1.2% of the region had moderate DO levels (2-5 mg/L) and no part of the survey area had DO <2.0 mg/L. In addition, offshore waters throughout the region had relatively low levels of total suspended solids (TSS), nutrients, and chlorophyll a indicative of oligotrophic conditions. Results suggested good sediment quality as well. Sediments throughout the region, which ranged from sands to intermediate muddy sands, had low levels of total organic carbon (TOC) below bioeffect guidelines for benthic organisms. Chemical contaminants in sediments were also mostly at low, background levels. For example, none of the stations had chemicals in excess of corresponding Effects-Range Median (ERM) probable bioeffect values or more than one chemical in excess of lower-threshold Effects-Range Low (ERL) values. Cadmium was the only chemical that occurred at moderate concentrations between corresponding ERL and ERM values. Sixty fish samples from 28 stations were collected and analyzed for chemical contaminants. Eleven of these samples (39% of sites) had moderate levels of contaminants, between lower and upper non-cancer human-health thresholds, and ten (36% of sites) had high levels of contaminants above the upper threshold.
Resumo:
This memorandum has four parts. The first is a review and partial synthesis of Phase 1 and Phase 2 Reports by Dr. Ernest Estevez of the Mote Marine Laboratory to the Board of County Commissioners of Sarasota County, Florida. The review and synthesis emphasizes identification of the most important aspects of the structure of the Myakka system in terms of forcing functions, biological components, and major energy flows. In this context, the dominant primary producers, dominant fish species and food habits, and major environmental variables were of articular interest. A major focus of the review and synthesis was on the river zonations provided in the report and based on salinity and various biological indicators. The second part of this memorandum is a review of a draft report by Mote Marine Laboratory on evaluation of potential water quality impacts on the Myakka River from proposed activities in the watershed. This Memorandum's third part is a review of resource-management related ecosystem models in the context of possible future models of the Myakka River Ecosystem. The final part of this memorandum is proposed future work as an extension of the initial reports.
Resumo:
The Southeast Fisheries Science Center (SEFSC) initiated annual, vessel-based visual sampling surveys of northern Gulf of Mexico marine mammals in 1990 and conducted a similar survey in U.S. Atlantic Exclusive Economic Zone (EEZ) waters from Miami, Florida, to Cape Hatteras, North Carolina, in 1992. The primary goal of these surveys was to meet Marine Mammal Protection Act requirements for estimating abundance and monitoring trends of marine mammal stocks in United States waters. The surveys were designed to collect: 1) marine mammal sighting data to estimate abundance and to determine distribution and diversity; and 2) environmental data to evaluate factors which may affect the distribution, abundance and diversity of marine mammals. The preliminary analyses for abundance estimation from the 1990-1993 surveys are presented in this report.
Resumo:
The Southeast Fisheries Science Center (SEFSC) initiated annual, vessel-based visual sampling surveys of northern Gulf of Mexico marine mammals in 1990. The primary goal of these surveys was to meet Marine Mammal Protection Act requirements for estimating abundance and monitoring trends of marine mammal stocks in United States waters. The surveys were designed to collect: 1) marine mammal sighting data to estimate abundance and to determine distribution and diversity; and 2) environmental data to evaluate factors which may affect the distribution, abundance and diversity of marine mammals. The analyses for abundance estimation from the 1991-1994 surveys are presented in this report.