237 resultados para memorandum


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The family Priacanthidae contains four genera and four species that occur in the western central North Atlantic (Starnes, 1988). Pristigenys alta is distributed in the Caribbean, Gulf of Mexico and along the east coast of North America. Although juveniles have been reported from as far north as southern New England waters, adults are not reported north of Cape Hatteras, NC. Priacanthus arenatus is distributed in tropical and tropically influenced areas of the western central North Atlantic in insular and continental shelf waters. Adult P. arenatus are distributed north to North Carolina and Bermuda, juveniles have been collected as far north as Nova Scotia. Cookeolus japonicus and Heteropriacanthus cruentatus are circumglobally distributed species and are both common in insular habitats. In the western central North Atlantic, C. japonicus ranges from New Jersey to Argentina; H. cruentatus from New Jersey and northern Gulf of Mexico to southern Brazil (Starnes, 1988). (PDF contains 6 pages)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The family Gerreidae contains four genera and 13 species that occur in the western central North Atlantic. Adult gerreids are small to medium size fishes that are abundant in coastal waters, bays, and estuaries in tropical and warm temperate regions and sometimes occur in freshwaters. They are generally associate~ with grassy or open bottoms, but not with reefs. Gerreids are silvery fishes, with deeply forked tails, and extremely protrusible mouth that points downward when protracted. They apparently feed on bottom-dwelling organisms and at least one species (Eucinostomus gula) shows a distinct transition, during the juvenile period, from a planktivore (exclusively copepods) to a carnivore that includes a diet of almost solely polychaetes (Carr & Adams, 1973; Robins and Ray, 1987; Murdy et al., 1997). (PDF contains 10 pages)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The 19th Annual Symposium on Sea Turtle Biology and Conservation was the largest to date. The beautiful venue was the South Padre Island Convention Centre on South Padre Island, Texas from March 2-6, 1999. Key features of the 19th were invited talks on the theme The Promise, the Pain, and the Progress of 50 years of Sea Turtle Research and Conservation, a mini-symposium on the Kemp's ridley and an increased emphasis on high quality poster sessions. Hosts for the meeting included Texas A&M University, the Texas Sea Grant College Program, The Gladys Porter Zoo and Sea Turtle, Inc. Co-sponsors included the National Marine Fisheries Service-Southeast Fisheries Science Center, the National Marine Fisheries Service-Protected Resources Branch, Padre Island National Seashore and the U.S. Fish and Wildlife Service. With the assistance of Jack Frazier, we were fortunate to obtain a $30,000 grant from the David and Lucile Packard Foundation. This grant provided travel support to 49 individuals from 24 nations who presented a total of 50 presentations. (PDF contains 309 pages)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

For the first time in its history, the International Symposium on Sea Turtle Biology and Conservation migrated to a site outside of the United States. Thus the Eighteenth edition was hosted by the Mazatlán Research Unit of the Instituto de Ciencias del Mar y Limnología of the Mexican National Autonomous University (UNAM) in Mazatlán, Sinaloa (Mexico) where it was held from 3-7, March, 1998. Above all, our symposium is prominent for its dynamism and enthusiasm in bringing together specialists from the world´s sea turtle populations. In an effort to extend this philosophy, and fully aware of how fast the interest in sea turtles has grown, the organizers paid special attention to bring together as many people as possible. With the tremendous efforts of the Travel Committee and coupled with a special interest by the Latin American region´s devotees, we managed to get 653 participants from 43 countries. The number of presentations increased significantly too, reaching a total of 265 papers, ranging from cutting-edge scientific reports based on highly sophisticated methods, to the experiences and successes of community-based and environmental education programs. A priority given by this symposium was the support and encouragement for the construction of "bridges" across cultural and discipline barriers. We found success in achieving a multinational dialogue among interest groups- scientists, resource managers, decision makers, ngo's, private industry. There was a broad representation of the broad interests that stretch across these sectors, yet everyone was able to listen and offer their own best contribution towards the central theme of the Symposium: the conservation of sea turtles and the diversity of marine and coastal environments in which they develop through their complicated and protracted life cycle. Our multidisciplinary approach is highly important at the present, finding ourselves at a cross roads of significant initiatives in the international arena of environmental law, where the conservation of sea turtles has a key role to play. Many, many people worked hard over the previous 12 months, to make the symposium a success. Our sincerest thanks to all of them: Program committee: Laura Sarti (chair), Ana Barragán, Rod Mast, Heather Kalb, Jim Spotilla, Richard Reina, Sheryan Epperly, Anna Bass, Steve Morreale, Milani Chaloupka, Robert Van Dam, Lew Ehrhart, J. Nichols, David Godfrey, Larry Herbst, René Márquez, Jack Musick, Peter Dutton, Patricia Huerta, Arturo Juárez, Debora Garcia, Carlos Suárez, German Ramírez, Raquel Briseño, Alberto Abreu; Registration and Secretary: Jane Provancha (chair), Lupita Polanco; Informatics: Germán Ramírez, Carlos Suárez; Cover art: Blas Nayar; Designs: Germán Ramírez, Raquel Briseño, Alberto Abreu. Auction: Rod Mast; Workshops and special meetings: Selina Heppell; Student prizes: Anders Rhodin; Resolutions committee: Juan Carlos Cantú; Local organizing committee: Raquel Briseño, Jane Abreu; Posters: Daniel Ríos and Jeffrey Semminoff; Travel committee: Karen Eckert (chair), Marydele Donnelly, Brendan Godley, Annette Broderick, Jack Frazier; Student travel: Francisco Silva and J. Nichols; Vendors: Tom McFarland and J. Nichols; Volunteer coordination: Richard Byles; Latin American Reunión: Angeles Cruz Morelos; Nominations committee: Randall Arauz, Colleen Coogan, Laura Sarti, Donna Shaver, Frank Paladino. Once again, Ed Drane worked his usual magic with the Treasury of the Symposium Significant financial contributions were generously provided by government agencies. SEMARNAP (Mexico´s Ministry of Environment, Natural Resources and Fisheries) through its central office, the Mazatlán Regional Fisheries Research Center (CRIP-Mazatlán) and the National Center for Education and Capacity Building for Sustainable Development (CECADESU) contributed to the logistics and covered the costs of auditoria and audiovisual equipment for the Symposium, teachers and their hotels for the Community Development and Environmental Education workshop in the 5th Latin American Sea Turtle Specialists; DIF (Dept of Family Affairs) provided free accomodation and food for the more than 100 participants in the Latin American Reunion. In this Reunion, the British Council-Mexico sponsored the workshop on the Project Cycle. The National Chamber of the Fisheries Industry (CANAINPES) kindly sponsored the Symposium´s coffee breaks. Personnel from the local Navy (Octave Zona Naval) provided invaluable aid in transport and logistics. The Scientific Coordination Office from UNAM (CICUNAM) and the Latin American Biology Network (RELAB) also provided funding. Our most sincere recognition to all of them. In the name of this Symposium´s compilers, I would like to also express our gratitude to Wayne Witzell, Technical Editor for his guidance and insights and to Jack Frazier for his help in translating and correcting the English of contributions from some non-native English speakers. Many thanks to Angel Fiscal and Tere Martin who helped with the typing in the last, last corrections and editions for these Proceedings. To all, from around the world, who generously helped make the 18th Symposium a huge success, shared their experiences and listened to ours, our deepest gratitude! (PDF contains 316 pages)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An assessment of the status of the Atlantic stock of red drum is conducted using recreational and commercial data from 1986 through 1998. This assessment updates data and analyses from the 1989, 1991, 1992 and 1995 stock assessments on Atlantic coast red drum (Vaughan and Helser, 1990; Vaughan 1992; 1993; 1996). Since 1981, coastwide recreational catches ranged between 762,300 pounds in 1980 and 2,623,900 pounds in 1984, while commercial landings ranged between 60,900 pounds in 1997 and 422,500 pounds in 1984. In weight of fish caught, Atlantic red drum constitute predominantly a recreational fishery (ranging between 85 and 95% during the 1990s). Commercially, red drum continue to be harvested as part of mixed species fisheries. Using available length-frequency distributions and age-length keys, recreational and commercial catches are converted to catch in numbers at age. Separable and tuned virtual population analyses are conducted on the catch in numbers at age to obtain estimates of fishing mortality rates and population size (including recruitment to age 1). In tum, these estimates of fishing mortality rates combined with estimates of growth (length and weight), sex ratios, sexual maturity and fecundity are used to estimate yield per recruit, escapement to age 4, and static (or equilibrium) spawning potential ratio (static SPR, based on both female biomass and egg production). Three virtual analysis approaches (separable, spreadsheet, and FADAPT) were applied to catch matrices for two time periods (early: 1986-1991, and late: 1992-1998) and two regions (Northern: North Carolina and north, and Southern: South Carolina through east coast of Florida). Additional catch matrices were developed based on different treatments for the catch-and-release recreationally-caught red drum (B2-type). These approaches included assuming 0% mortality (BASEO) versus 10% mortality for B2 fish. For the 10% mortality on B2 fish, sizes were assumed the same as caught fish (BASEl), or positive difference in size distribution between the early period and the later period (DELTA), or intermediate (PROP). Hence, a total of 8 catch matrices were developed (2 regions, and 4 B2 assumptions for 1986-1998) to which the three VPA approaches were applied. The question of when offshore emigration or reduced availability begins (during or after age 3) continues to be a source of bias that tends to result in overestimates of fishing mortality. Additionally, the continued assumption (Vaughan and Helser, 1990; Vaughan 1992; 1993; 1996) of no fishing mortality on adults (ages 6 and older), causes a bias that results in underestimates of fishing mortality for adult ages (0 versus some positive value). Because of emigration and the effect of the slot limit for the later period, a range in relative exploitations of age 3 to age 2 red drum was considered. Tuning indices were developed from the MRFSS, and state indices for use in the spreadsheet and FADAPT VPAs. The SAFMC Red Drum Assessment Group (Appendix A) favored the FADAPT approach with catch matrix based on DELTA and a selectivity for age 3 relative to age 2 of 0.70 for the northern region and 0.87 for the southern region. In the northern region, estimates of static SPR increased from about 1.3% for the period 1987-1991 to approximately 18% (15% and 20%) for the period 1992-1998. For the southern region, estimates of static SPR increased from about 0.5% for the period 1988-1991 to approximately 15% for the period 1992-1998. Population models used in this assessment (specifically yield per recruit and static spawning potential ratio) are based on equilibrium assumptions: because no direct estimates are available as to the current status of the adult stock, model results imply potential longer term, equilibrium effects. Because current status of the adult stock is unknown, a specific rebuilding schedule cannot be determined. However, the duration of a rebuilding schedule should reflect, in part, a measure of the generation time of the fish species under consideration. For a long-lived, but relatively early spawning, species as red drum, mean generation time would be on the order of 15 to 20 years based on age-specific egg production. Maximum age is 50 to 60 years for the northern region, and about 40 years for the southern region. The ASMFC Red Drum Board's first phase recovery goal of increasing %SPR to at least 10% appears to have been met. (PDF contains 79 pages)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Executive Summary: This study describes the socio-economic characteristics of the U.S. Caribbean trap fishery that encompasses the Commonwealth of Puerto Rico and Territory of the U.S. Virgin Islands. In-person interviews were administered to one hundred randomly selected trap fishermen, constituting nearly 25% of the estimated population. The sample was stratified by geographic area and trap tier. The number of traps owned or fished to qualify for a given tier varied by island. In Puerto Rico, tier I consisted of fishermen who had between 1-40 fish traps, tier II was made up of fishermen who possessed between 41 and 100 fish traps, and tier III consisted of fishermen who held in excess of 100 fish traps. In St. Thomas and St. John, tier I was composed of fishermen who held between 1 and 50 fish traps, tier II consisted of fishermen who had between 51-150 fish traps and tier III was made up of fishermen who had in excess of 150 fish traps. Lastly, in St. Croix, tier I was made up of fishermen who had less than 20 fish traps and tier II consisted of fishermen who had 20 or more fish traps. The survey elicited information on household demographics, annual catch and revenue, trap usage, capital investment on vessels and equipment, fixed and variable costs, behavioral response to a hypothetical trap reduction program and the spatial distribution of traps. The study found that 79% of the sampled population was 40 years or older. The typical Crucian trap fisherman was older than their Puerto Rican and St. Thomian and St. Johnian counterparts. Crucian fishermen’s average age was 57 years whereas Puerto Rican fishermen’s average age was 51 years, and St. Thomian and St. Johnian fishermen’s average age was 48 years. As a group, St. Thomian and St. Johnian fishermen had 25 years of fishing experience, and Puerto Rican and Crucian fishermen had 30, and 29 years, respectively. Overall, 90% of the households had at least one dependent. The average number of dependents across islands was even, ranging between 2.8 in the district of St. Thomas and St. John and 3.4 in the district of St. Croix. The percentage utilization of catch for personal or family use was relatively low. Regionally, percentage use of catch for personal or family uses ranged from 2.5% in St. Croix to 3.8% in the St. Thomas and St. John. About 47% of the respondents had a high school degree. The majority of the respondents were highly dependent on commercial fishing for their household income. In St. Croix, commercial fishing made up 83% of the fishermen’s total household income, whereas in St. Thomas and St. John and Puerto Rico it contributed 74% and 68%, respectively. The contribution of fish traps to commercial fishing income ranged from 51% in the lowest trap tier in St. Thomas and St. John to 99% in the highest trap tier in St. Croix. On an island basis, the contribution of fish traps to fishing income was 75% in St. Croix, 61% in St. Thomas and St. John, and 59% in Puerto Rico. The value of fully rigged vessels ranged from $400 to $250,000. Over half of the fleet was worth $10,000 or less. The St. Thomas and St. John fleet reported the highest mean value, averaging $58,518. The Crucian and Puerto Rican fleets were considerably less valuable, averaging $19,831 and $8,652, respectively. The length of the vessels ranged from 14 to 40 feet. Fifty-nine percent of the sampled vessels were at least 23 feet in length. The average length of the St. Thomas and St. John fleet was 28 feet, whereas the fleets based in St. Croix and Puerto Rico averaged 21 feet. The engine’s propulsion ranged from 8 to 400 horsepower (hp). The mean engine power was 208 hp in St. Thomas and St. John, 108 hp in St. Croix, and 77 hp in Puerto Rico. Mechanical trap haulers and depth recorders were the most commonly used on-board equipment. About 55% of the sampled population reported owning mechanical trap haulers. In St. Thomas and St. John, 100% of the respondents had trap haulers compared to 52% in Puerto Rico and 20% in St. Croix. Forty-seven percent of the fishermen surveyed stated having depth recorders. Depth recorders were most common in the St. Thomas and St. John fleet (80%) and least common in the Puerto Rican fleet (37%). The limited presence of emergency position indication radio beacons (EPIRBS) and radar was the norm among the fish trap fleet. Only 8% of the respondents had EPIRBS and only 1% had radar. Interviewees stated that they fished between 1 and 350 fish traps. Puerto Rican respondents fished on average 39 fish traps, in contrast to St. Thomian and St. Johnian and Crucian respondents, who fished 94 and 27 fish traps, respectively. On average, Puerto Rican respondents fished 11 lobster traps, and St. Thomian and St. Johnian respondents fished 46 lobster traps. None of the Crucian respondents fished lobster traps. The number of fish traps built or purchased ranged between 0 and 175, and the number of lobster traps built or bought ranged between 0 and 200. Puerto Rican fishermen on average built or purchased 30 fish traps and 14 lobster traps, and St. Thomian and St. Johnian fishermen built or bought 30 fish traps and 11 lobster traps. Crucian fishermen built or bought 25 fish traps and no lobster traps. As a group, fish trap average life ranged between 1.3 and 5 years, and lobster traps lasted slightly longer, between 1.5 and 6 years. The study found that the chevron or arrowhead style was the most common trap design. Puerto Rican fishermen owned an average of 20 arrowhead traps. St. Thomian and St. Johnian and Crucian fishermen owned an average of 44 and 15 arrowhead fish traps, respectively. The second most popular trap design was the square trap style. Puerto Rican fishermen had an average of 9 square traps, whereas St. Thomian and St. Johnian fishermen had 33 traps and Crucian fishermen had 2 traps. Antillean Z (or S) -traps, rectangular and star traps were also used. Although Z (or S) -traps are considered the most productive trap design, fishermen prefer the smaller-sized arrowhead and square traps because they are easier and less expensive to build, and larger numbers of them can be safely deployed. The cost of a fish trap, complete with rope and buoys, varied significantly due to the wide range of construction materials utilized. On average, arrowhead traps commanded $94 in Puerto Rico, $251 in St. Thomas and St. John, and $119 in St. Croix. The number of trips per week ranged between 1 and 6. However, 72% of the respondents mentioned that they took two trips per week. On average, Puerto Rican fishermen took 2.1 trips per week, St. Thomian and St. Johnian fishermen took 1.4 trips per week, and Crucian fishermen took 2.5 trips per week. Most fishing trips started at dawn and finished early in the afternoon. Over 82% of the trips lasted 8 hours or less. On average, Puerto Rican fishermen hauled 27 fish traps per trip whereas St. Thomian and St. Johnian fishermen and Crucian fishermen hauled 68 and 26 fish traps per trip, respectively. The number of traps per string and soak time varied considerably across islands. In St. Croix, 84% of the respondents had a single trap per line, whereas in St. Thomas and St. John only 10% of the respondents had a single trap per line. Approximately, 43% of Puerto Rican fishermen used a single trap line. St. Thomian and St. Johnian fishermen soaked their traps for 6.9 days while Puerto Rican and Crucian fishermen soaked their traps for 5.7 and 3.6 days, respectively. The heterogeneity of the industry was also evidenced by the various economic surpluses generated. The survey illustrated that higher gross revenues did not necessarily translate into higher net revenues. Our analysis also showed that, on average, vessels in the trap fishery were able to cover their cash outlays, resulting in positive vessel income (i.e., financial profits). In Puerto Rico, annual financial profits ranged from $4,760 in the lowest trap tier to $32,467 in the highest tier, whereas in St. Thomas and St. John annual financial profits ranged from $3,744 in the lowest tier to $13,652 in the highest tier. In St. Croix, annual financial profits ranged between $9,229 and $15,781. The survey also showed that economic profits varied significantly across tiers. Economic profits measure residual income after deducting the remuneration required to keep the various factors of production in their existing employment. In Puerto Rico, annual economic profits ranged from ($9,339) in the lowest trap tier to $ 8,711 in the highest trap tier. In St. Thomas and St. John, annual economic profits ranged from ($7,920) in the highest tier to ($18,486) in the second highest tier. In St. Croix, annual economic profits ranged between ($7,453) to $10,674. The presence of positive financial profits and negative economic profits suggests that higher economic returns could be earned from a societal perspective by redirecting some of these scarce capital and human resources elsewhere in the economy. Furthermore, the presence of negative economic earnings is evidence that the fishery is overcapitalized and that steps need to be taken to ensure the long-run economic viability of the industry. The presence of positive financial returns provides managers with a window of opportunity to adopt policies that will strengthen the biological and economic performance of the fishery while minimizing any adverse impacts on local fishing communities. Finally, the document concludes by detailing how the costs and earnings information could be used to develop economic models that evaluate management proposals. (PDF contains 147 pages)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The spotted seatrout (Cynoscion nebulosus) is considered a key species relative to the implementation of the Comprehensive Everglades Restoration Plan (CERP). One of the goals of the CERP is to increase freshwater flows to Florida Bay. Increased freshwater flows can have potential positive and negative impacts on spotted seatrout populations. At low salinities, the planktonic eggs of spotted seatrout sink to the bottom and are not viable (Alshuth and Gilmore, 1994; Holt and Holt, 2002). On the other hand, increased freshwater flows can alleviate hypersaline conditions that could result in an expansion of the distribution of the early life stages of spotted seatrout (Thayer et al., 1999; Florida Department of Environmental Protection1). Thus it would be useful to develop a monitoring program that can detect changes in seatrout abundance on time scales short enough to be useful to resource managers. The NOAA Center for Coastal Fisheries and Habitat Research (NOAA) has made sporadic collections of juvenile seatrout using otter trawls since 1984 (see Powell et al, 2004). The results suggest that it might be useful to sample for seatrout in as many as eight different areas or basins (Figure 1): Bradley Key, Sandy Key, Johnson Key, Palm Key, Snake Bight, Central, Whipray and Crocodile Dragover. Unfortunately, logistical constraints are likely to limit the number of tows to about 40 per month over a period of six months each year. Inasmuch as few seatrout are caught in any given tow and the proportion of tows with zero seatrout is often high, it is important to determine how best to allocate this limited sampling effort among the various basins so that any trends in abundance may be detected with sufficient statistical confidence. (PDF contains 16 pages)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The 22nd Annual Symposium on Sea Turtle Biology and Conservation was held April 4-7, 2002 in Miami, Florida and hosted by the U.S. Fish and Wildlife Service. The 22nd symposium was the most globally diverse ever with 839 individuals from 73 countries attending the symposium and associated regional meetings. One third of the attendees were from outside the United States. This diverse attendance was made possible in large part because of substantial donations from The Packard Foundation, National Fish and Wildlife Foundation, National Marine Fisheries Service, U.S. Fish and Wildlife Service, Convention on Migratory Species, Oceanic Research Foundation, and International Sea Turtle Society which supported travel grants for 170 international travelers. (PDF contains 336 pages)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ichthyoplankton was sampled at 14 stations with 60 cm bongo nets fitted with 0.333 mm mesh in basins throughout Florida Bay in 1994-1995. In addition, I compared collections made using an epibenthic sled to those made with standard ichthyoplankton bongo nets at four stations during July 1997-November,1999 to determine ifthe two types of gear are complementary. In 1994-1995, in descending order of abundance, Clupeiformes, Gobiidae, Callionymidae, Sciaenidae, Labrisomidae, Soleidae and Blenniidae dominated the ichthyoplankton. Densities of clupeiforms were generally very high (> 100 larvae 100 m-3) or high (10.0 - 99.9 larvae 100 m-3). Gobiid larvae were ubiquitous with highest densities occurring in waters in close proximity to the Gulf of Mexico (109.7 larvae 100 m-3), lowest in two ofthree eastern Florida Bay stations (<1.0 larva 100 m-3). Spotted seatrout, Cynoscion nebulosus, dominated larval sciaenid collections and the only other sciaenid identified to species was the sand seatrout, Cynoscion arenarius. Taxa differed markedly between collections taken by epibenthic sled and standard ichthyoplankton bongo nets. Taxa collected with standard ichthyoplankton gear were those that spawn in Florida Bay and have pelagic larvae (i.e., engraulids and gobiids). Taxa collected with the sled were small resident species that have benthic larvae (i.e., syngnathids and cyprinodonts) or taxa that spawn outside the bay, but use the bay as a nursery area (i.e., gerreids and haemulids). Recently-settled red drum, Sciaenops ocellatus, were collected with the epibenthic sled in November 1999, although juveniles of this important gamefish are rare in the bay.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In February 2006, an Alternative Platform Observer Program (APP) was implemented in North Carolina (NC) to observe commercial gillnet trips by small vessels [<24 ft (7.2 m)] in nearshore waters out to three nm (5.6 km). Efforts began with outreach to the fishing industry while simultaneously gathering information to be incorporated in a Database of Fishermen. From 30 March 2006 through 31 March 2007, 36 trips were observed. Observed trips of the NC nearshore gillnet fishery targeted seven species: kingfish (Menticirrhus spp.), Spanish mackerel (Scomberomorus maculatus), spiny dogfish (Squalus acanthias), spot (Leiostomus xanthurus), spotted seatrout (Cynoscion nebulosus), striped bass (Morone saxatilis), and weakfish (Cynoscion regalis). Of the 36 trips, 20 (55.6%) were with vessels that were new to the Northeast Fisheries Observer Program (NEFOP), having never carried an observer. Based on the landings data for small vessels from North Carolina Division of Marine Fisheries (NCDMF), the APP has achieved 10.1% coverage by number of trips and 4.0% by pounds landed. No incidental takes of bottlenose dolphins were observed by the APP, although bottlenose dolphins were sighted during 19 (52.8%) observed trips. The APP has drastically increased the number of observed trips of small vessels in the nearshore waters of NC. When combined with trips observed by NEFOP (n=205), the APP resulted in a 15.6% increase in the number of observed gillnet trips. (PDF contains 34 pages)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Red drum is one ofthe most popular species sought by anglers in Florida Bay, yet juveniles are rarely encountered. We evaluated Florida Bay as a nursery area for red drum by sampling for recently-settled late larvae in basin areas within the bay with an epi-benthic sled at six stations in November 2000, and at seven stations during December 2000 through February 2001. In November 2000 we surveyed potential sampling sites in quiet backwaters adjacent to mangroves for juvenile red drum. A total of 202 sites were sampled mainly in northern Florida Bay and adjacent waters with a cast net. We collected only one recently-settled red drum larvae and no juveniles. Obviously the sites that we sampled in Florida Bay and adjacent waters are not nursery habitat for this valuable species. Sled collections were dominated by bay anchovy, Anchoa mitchilli, but densities were biased by one collection. Five small resident species were among the dominant species: rainwater killifish, Lucania parva; dusky pipefish, Syngnathus floridae; dwarf seahorse, Hippocampus zosterae; and clown goby, Microgobius gulosus. Three species that spawn outside Florida Bay in the GulfofMexico were common: pinfish, Lagodon rhomboides; pigfish, Orthopristis chrysoptera; and silver perch, Bairdiella chrysoura. Twenty-seven species were collected with the cast net. Hardhead silversides (Atherinomorus stipes), bay anchovy, tidewater mojarra (Eucinostomus harengulus), silver jenny (Eucinostomus gula), and goldspotted killifish (Floridichthys carpio) were the most common in cast net collections. Although only one red drum was collected, we were able to: (1) identify mesohaline waters from our cast net sites to test our preliminary assessment that mesohaline habitat might be limited in Florida Bay, (2) document the distribution and abundance of fishes collected by cast net that should enhance our understanding of ichthyofauna in the Northern Subdivision ofFlorida Bay and adjacent waters, and (3) from epibenthic sled collections, describe the habitats, abundance and distribution of recently settled larvae/small juveniles/small resident fishes during late fall and winter. This information should be useful to managers and future research. (PDF contains 34 pages)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The coastal shrimp trawl fisheries have long been the focus of conservation actions to reduce turtle bycatch and mortality in the Gulf of Mexico and the U.S. Atlantic (NRC, 1990). Calculation of catch rates of sea turtles in shrimp trawls is necessary to evaluate the impact on sea turtle populations. In this paper we analyze sea turtle bycatch to provide an estimate of the current number of interactions with otter trawl gear as well as an estimate of the number of fatal inions in Southeast U.S. waters and the Gulf of Mexico. We also provide an estimate of the number of individuals likely to die in the future with the new regulations that will require an increase in the size of the escape openings in trutle excluder devices (TEDs). The new regulations will allow many more turtles to escape. Other gears also are discussed. (PDF contains 24 pages)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

On September 7, 2000 the National Marine Fisheries Service announced that it was reinitiating consultation under Section 7 of the Endangered Species Act on pelagic fisheries for swordfish, sharks, tunas, and billfish. 1 Bycatch of a protected sea turtle species is considered a take under the Endangered Species Act (PL93-205). On June 30, 2000 NMFS completed a Biological Opinion on an amendment to the Highly Migratory Pelagic Fisheries Management Plan that concluded that the continued operation of the pelagic longline fishery was likely to jeopardize the continued existence of loggerhead and leatherback sea turtles.2 Since that Biological Opinion was issued NMFS concluded that further analyses of observer data and additional population modeling of loggerhead sea turtles was needed to determine more precisely the impact of the pelagic longline fishery on turtles. 3,4 Hence, the reinitiation of consultation. The documents that follow constitute the scientific review and synthesis of information pertaining to the narrowly defined reinitiation of consultation: the impact of the pelagic longline fishery on loggerhead and leatherback sea turtles The document is in 3 parts, plus 5 appendices. Part I is a stock assessment of loggerhead sea turtles of the Western North Atlantic. Part II is a stock assessment of leatherback sea turtles of the Western North Atlantic. Part III is an assessment of the impact of the pelagic longline fishery on loggerhead and leatherback sea turtles of the Western North Atlantic. These documents were prepared by the NMFS Southeast Fisheries Science Center staff and academic colleagues at Duke University and Dalhousie University. Personnel involved from the SEFSC include Joanne Braun-McNeill, Lisa Csuzdi, Craig Brown, Jean Cramer, Sheryan Epperly, Steve Turner, Wendy Teas, Nancy Thompson, Wayne Witzell, Cynthia Yeung, and also Jeff Schmid under contract from the University or Miami. Our academic colleagues, Ransom Myers, Keith Bowen, and Leah Gerber from Dalhousie University and Larry Crowder and Melissa Snover from Duke University, also recipients of a Pew Charitable Trust Grant for a Comprehensive Study of the Ecological Impacts of the Worldwide Pelagic Longline Industry, made significant contributions to the quantitative analyses and we are very grateful for their collaboration. We appreciate the reviews of the stock definition sections on loggerheads and leatherbacks by Brian Bowen, University of Florida, and Peter Dutton, National Marine Fisheries Service Southwest Fisheries Science Center, respectively, and the comments of the NMFS Center of Independent Experts reviewers Robert Mohn, Ian Poiner, and YouGan Wang on the entire document. We also wish to acknowledge all the unpublished data used herein which were contributed by many researchers, especially the coordinators and volunteers of the nesting beach surveys and the sea turtle stranding and salvage network and the contributors to the Cooperative Marine Turtle Tagging Program. (PDF contains 349 pages)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This assessment applies to cobia (Rachycentron canadum) located in the territorial waters of the U.S. Gulf of Mexico. Separation of the Gulf of Mexico and Atlantic Ocean is defined by the seaward extension of the Dade/Monroe county line in south Florida. Mixing of fish between the Atlantic and Gulf of Mexico occurs in the Florida Keys during winter months. Cobia annually migrate north in early spring in the Gulf to spawning grounds in the northern Gulf of Mexico, returning to the Florida Keys by winter. Catches of cobia in the Gulf of Mexico are dominated by recreational landings, accounting for nearly 90% of the total. Since 1980, the landings of cobia in the recreational fishery have remained fairly stable at around 400-600 mt with a slight peak of 1,014 mt in 1997. The recreational fishery was estimated to have landed 471 mt in 2000. The landings from the commercial fishery have shown a steady increase from 45 mt in 1980 to a peak of 120 mt in 1994, followed by a decline to 62 mt in 2000. The previous assessment of cobia occurred in 1996 using a virtual population analysis (VPA) model. For this analysis a surplus-production model (ASPIC) and a forward-projecting, age-structured population model programmed in the AD Model Builder (ADMB) software were applied to cobia data from the Gulf of Mexico. The primary data consisted of four catch-per-unit-effort (CPUE) indices derived from the Marine Recreational Fisheries Statistics Survey (MRFSS) (1981-1999), Southeast region headboat survey (1986-1999), Texas creel survey (1983-1999), and shrimp bycatch estimates (1980-1999). Length samples were available from the commercial (1983-2000) and recreational (1981-2000) fisheries. The ASPIC model applied to the cobia data provided unsatisfactory results. The ADMB model fit described the observed length composition data and fishery landings fairly well based on graphical examination of model residuals. The CPUE indices indicated some disagreement for various years, but the model fit an overall increasing trend from 1992-1997 for the MRFSS, headboat, and Texas creel indices. The shrimp bycatch CPUE was treated as a recruitment index in the model. The fit to these data followed an upward trend in recruitment from 1988-1997, but did not fit the 1994-1997 data points very well. This was likely the result of conflicting information from other data sources. Natural mortality (M) for cobia is unknown. As a result, a range of values for M from 0.2-0.4, based on longevity and growth parameters, were selected for use in the age-structured model. The choice of natural mortality appears to greatly influence the perceived status of the population. Population status as measured by spawning stock biomass in the last year relative to the value at maximum sustainable yield (SSB2000/SSBMSY), spawning stock biomass in the last year relative to virgin spawning stock biomass (SSB2000/S0), and static spawning stock biomass per recruit (SSBR) all indicate the population is either depleted, near MSY, or well above MSY depending on the choice of M. The variance estimates for these benchmarks are very large and in most cases ranges from depleted to very healthy status. The only statement that can be made with any degree of certainty about cobia in the Gulf of Mexico is that the population has increased since the 1980s. (PDF contains 61 pages)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Assessments of the Atlantic red drum for the northern (North Carolina and north) and southern (South Carolina through east coast of Florida) regions along the U. S. Atlantic coast were recently completed. The joint Red Drum Technical Committee (SAFMC/ASMFC) selected the most appropriate catch matrix (incorporating an assumption on size of recreationally-released fish), selectivity of age 3 relative to age 2, and virtual population analysis (FADAPT). Given gear- and age-specific estimates of fishing mortality (F) for the 1992-1998 period, analyses were made of potential gains in escapement through age 4 and static spawning potential ratio (SPR) from further reductions in fishing mortality due to changes in slot and bag limits. Savings from bag limits were calculated given a particular slot size for the recreational fishery, with no savings for the commercial fisheries in the northern region due to their being managed primarily through a quota. Relative changes in catch-at-age estimates were used to adjust age-specific F and hence calculated escapement through age 4 and static SPR. Adjustment was made with the recreational savings to account for release mortality (10%, as in the stock assessment). Alternate runs for the northern region commercial fishery considered 25% release mortality for lengths outside the slot (instead of 0% for the base run), and 0% vs. 10% gain or loss across legal sizes in F. These results are summarized for ranges of bag limits with increasing minimum size limit (for fixed maximum size), and with decreasing maximum size limit (for fixed minimum size limit). For the southern region, a bag limit of one-fish per angler trip would be required to attain the stated target of 40% static SPR if the current slot limit were not changed. However, for the northern region, a bag limit of one-fish per angler trip appears to be insufficient to attain the stated target of 40% static SPR while maintaining the current slot limit. (PDF contains 41 pages)