46 resultados para management practices
Resumo:
This synthesis presents a science overview of the major forest management Issues involved in the recovery of anadromous salmonids affected by timber harvest in the Pacific Northwest and Alaska. The issues involve the components of ecosystem-based watershed management and how best to implement them, including how to: Design buffer zones to protect fish habitat while enabling economic timber production; Implement effective Best Management Practices (BMPs) to prevent nonpoint-source pollution; Develop watershed-level procedures across property boundaries to prevent cumulative impacts; Develop restoration procedures to contribute to recovery of ecosystem processes; and Enlist support of private landowners in watershed planning, protection, and restoration. Buffer zones, BMPs, cumulative impact prevention, and restoration are essential elements of what must be a comprehensive approach to habitat protection and restoration applied at the watershed level within a larger context of resource concerns in the river basin, species status under the Endangered Species Act (ESA), and regional environmental and economic issues (Fig. ES. 1). This synthesis 1) reviews salmonid habitat requirements and potential effects of logging; 2) describes the technical foundation of forest practices and restoration; 3) analyzes current federal and non-federal forest practices; and 4) recommends required elements of comprehensive watershed management for recovery of anadromous salmonids.
Resumo:
Technological innovation has made it possible to grow marine finfish in the coastal and open ocean. Along with this opportunity comes environmental risk. As a federal agency charged with stewardship of the nation’s marine resources, the National Oceanic and Atmospheric Administration (NOAA) requires tools to evaluate the benefits and risks that aquaculture poses in the marine environment, to implement policies and regulations which safeguard our marine and coastal ecosystems, and to inform production designs and operational procedures compatible with marine stewardship. There is an opportunity to apply the best available science and globally proven best management practices to regulate and guide a sustainable United States (U.S.) marine finfish farming aquaculture industry. There are strong economic incentives to develop this industry, and doing so in an environmentally responsible way is possible if stakeholders, the public and regulatory agencies have a clear understanding of the relative risks to the environment and the feasible solutions to minimize, manage or eliminate those risks. This report spans many of the environmental challenges that marine finfish aquaculture faces. We believe that it will serve as a useful tool to those interested in and responsible for the industry and safeguarding the health, productivity and resilience of our marine ecosystems. This report aims to provide a comprehensive review of some predominant environmental risks that marine fish cage culture aquaculture, as it is currently conducted, poses in the marine environment and designs and practices now in use to address these environmental risks in the U.S. and elsewhere. Today’s finfish aquaculture industry has learned, adapted and improved to lessen or eliminate impacts to the marine habitats in which it operates. What progress has been made? What has been learned? How have practices changed and what are the results in terms of water quality, benthic, and other environmental effects? To answer these questions we conducted a critical review of the large body of scientific work published since 2000 on the environmental impacts of marine finfish aquaculture around the world. Our report includes results, findings and recommendations from over 420 papers, primarily from peer-reviewed professional journals. This report provides a broad overview of the twenty-first century marine finfish aquaculture industry, with a targeted focus on potential impacts to water quality, sediment chemistry, benthic communities, marine life and sensitive habitats. Other environmental issues including fish health, genetic issues, and feed formulation were beyond the scope of this report and are being addressed in other initiatives and reports. Also absent is detailed information about complex computer simulations that are used to model discharge, assimilation and accumulation of nutrient waste from farms. These tools are instrumental for siting and managing farms, and a comparative analysis of these models is underway by NOAA.
Resumo:
The St. Croix East End Marine Park (STXEEMP) was established in 2003 as the first multi-use marine park managed by the U.S. Virgin Islands Department of Planning and Natural Resources. It encompasses an area of approximately 155 km2 and is entirely within Territorial waters which extend up to 3 nautical miles from shore. As stated in the 2002 management plan, the original goals were to: protect and maintain the biological diversity and other natural values of the area; promote sound management practices for sustainable production purposes; protect the natural resource base from being alienated for other land use purposes that would be detrimental to the area’s biological diversity; and to contribute to regional and national development (The Nature Conservancy, 2002). At the time of its establishment, there were substantial data gaps in knowledge about living marine resources in the St. Croix, and existing data were inadequate for establishing baselines from which to measure the future performance of the various management zones within the park. In response to these data gaps, National Centers for Coastal Ocean Science (NCCOS), Center for Coastal Monitoring and Assessment, Biogeography Branch (CCMA-BB) worked with territorial partners to characterize and assess the status of the marine environment in and around the STXEEMP and land-based stressors that affect them. This project collected and analyzed data on the distribution, diversity and landscape condition of marine communities across the STXEEMP. Specifically, this project characterized (1) landscape and adjacent seascape condition relevant to threats to coral reef ecosystem health, and (2) the marine communities within STXEEMP zones to increase local knowledge of resources exposed to different regulations and stressors.
Resumo:
This baseline assessment of Jobos Bay and surrounding marine ecosystems consists of a two part series. The first report (Zitello et al., 2008) described the characteristics of the Bay and its watershed, including modeling work related to nutrients and sediment fluxes, based on existing data. The second portion of this assessment, presented in this document, presents the results of new field studies conducted to fill data gaps identified in previous studies, to provide a more complete characterization of Jobos Bay and the surrounding coral reef ecosystems. Specifically, the objective was to establish baseline values for the distribution of habitats, nutrients, contaminants, fi sh, and benthic communities. This baseline assessment is the first step in evaluating the effectiveness in changes in best management practices in the watershed. This baseline assessment is part of the Conservation Effects Assessment Project (CEAP), which is a multi-agency effort to quantify the environmental benefits of conservation practices used by agricultural producers participating in selected U.S. Department of Agriculture (USDA) conservation programs. Partners in the CEAP Jobos Bay Special Emphasis Watershed (SEW) included USDA’s Agricultural Research Service (ARS) and the Natural Resources Conservation Service (NRCS), National Oceanic and Atmospheric Administration (NOAA) and the Government of Puerto Rico. The project originated from an on-going collaboration between USDA and NOAA on the U.S. Coral Reef Task Force. The Jobos Bay watershed was chosen because the predominant land use is agriculture, including agricultural lands adjacent to the Jobos Bay National Estuarine Research Reserve (JBNERR or Reserve), one of NOAA’s 26 National Estuarine Research Reserves (NERR). This report is organized into six chapters that represent a suite of interrelated studies. Chapter 1 provides a short introduction to Jobos Bay, including the land use and hydrology of the watershed. Chapter 2 is focused on benthic mapping and provides the methods and results of newly created benthic maps for Jobos Bay and the surrounding coral reef ecosystem. Chapter 3 presents the results of new surveys of fish, marine debris, and reef communities of the system. Chapter 4 is focused on the distribution of chemical contaminants in sediments within the Bay and corals outside of the Bay. Chapter 5 focuses on quantifying nutrient and pesticide concentrations in the surface waters at the Reserve’s System-Wide Monitoring Program (SWMP) sites. Chapter 6 is a brief summary discussion that highlights key findings of the entire suite of studies.
Resumo:
The rockfishes of the sebastid genus Sebastes are a very important fishery resource off the coasts of California and southern Oregon. How-ever, many of the 54 managed stocks of west coast rockfish have recently reached historically low population levels, leading fishery managers to re-examine current management practices. Management of rockfish stocks as multispecies aggregates, as opposed to independent stocks within the ground-fish fishery, can be more desirable when nontargeted bycatch, discard, and management complexity are considered. Rockfish assemblage structure and species co-occurrences were determined by using data from the Alaska Fisheries Science Center triennial continental shelf bottom trawl survey. The weight of rockfish species in trawl catches was expressed as a catch-per-unit-of-effort (CPUE) statistic, from which species spatial distributions, overlaps, diversity, and richness were analyzed. Multidimensional scaling of transformed CPUE data was employed in indirect gradient and multivariate partitioning analyses to quantify assemblage relationships. Results indicated that rockfish distributions closely match the bathymetry of coastal waters. Indirect gradient analysis suggested that depth and latitude are the principal factors in structuring the spatial distributions of rockfish on trawlable habitat. In addition, four assemblages were identified through the joint evaluation of species’ distributions and multivariate partitioning analyses: 1) deep-water slope; 2) northern shelf; 3) southern shelf; and 4) nearshore. The slope, shelf, and near-shore groups are found in depth ranges of 200–500 m, 100–250 m, and 50–150 m, respectively. The division of northern and southern shelf assemblages occurs over a broad area between Cape Mendocino and Monterey Canyon. The results of this analysis are likely to have direct application in the management of rockfish stocks off the coasts of southern Oregon and California.
Resumo:
A realistic alternative to traditional technology development and transfer has been utilized by the International Center for Living Aquatic Resources Management (ICLARM) to integrate pond fish culture into low-input farming systems in Malawi. Resource mapping was used to assess farm resources and constraints and introduce the concept of integrated resource management (IRM), the synergistic movement of resources between and among farm and household enterprises. Farmer-led IRM research projects are conducted on-farm and monitored by researchers through direct observation and on-station simulation of constraints and management practices. Technology-adoption rates by farmers involved in a pilot activity was 65% compared to 0% by farmers exposed only to top-down extension approaches. Within two years of adoption, every participating farmer had transferred the technology to an average of four other farmers without the involvement of the extension services.
Resumo:
An investigation was carried out to monitor management practices and to find out whether there is any relationship with occurrence of deadly white spot disease and environmental parameters. Three semi-intensive and a improved traditional shrimp farms were selected in which mass mortality of shrimp (Penaeus monodon) by white spot disease occurred previously. The farms were situated at two different geographical locations. Two ponds from each farm at random were selected for the study. Out of eight investigated ponds, 6 ponds in three farms were affected by the disease during investigation period. The non-affected ponds had relatively lower stocking density, lightly different management practice and were located at different geographical area. There was no significant variation in water quality parameters among the affected and non-affected ponds. No significant variations were recorded in pond preparation, source of Post Larvae (PL), water and feed management among the affected and non-affected ponds. The observation indicated that pond micro-organisms in a farm may not the only cause of the disease but some external factors also might be responsible for the outbreak of this disease.
Resumo:
Paddy fields can be broadly classified on the basis of land situations viz. Upland - Shallow water (10-30 cm), Medium land-medium deepwater (30-100 cm) and Low land-deepwater (above 100 cm). Three major systems of paddy-cum-fish culture, viz. (A) high yielding paddy varieties (H.Y.V) and air-breathing fish under Upland, (B) H.Y.V./local paddy and Tilapia/common carp under Medium land and (C) deepwater paddy and major Indian carps under Low land situations have been successfully investigated in the farmers' fields and at the Research Stations (1982-92). Effects of low-cost artificial feeding on growth, yield and management practices of different types of fish showed a considerable increase of rice and fish yields and a decrease in insect-pest incidence. Under Upland situation, short duration H.Y.V. in combination with fast-growing air breathing fish was studied thrice a year (summer, winter & autumn seasons). Combined rice and fish culture produced highest yields in all the seasons than in the control.
Resumo:
The present status of the Himalayan mahseer in the three lakes of Nainital district of Uttar Pradesh is discussed based on the catch data from 1983-84 to 1992-93. Yield of mahseer have shown a gradual decline in the recent years. Besides catch statistics, market arrivals and availability of fish to anglers have also shown a marked decline. Tor putitora is being considered as an endangered fish. It is therefore necessary to repopulate the lakes with the mahseer by adopting better management practices like stocking the lakes continually with sufficient mahseer fingerlings and enforce strict conservation measures to stop killing of juveniles.
Resumo:
The demersal fish stock of Wadge Bank is one of the important fish resources for both Sri Lanka and India. Sivalingam and Medcof (1957) have given an account of its history, general features and relative productivity. According to records the total fishing effort on the bank had been fluctuating and very recently the number of boats operating on the bank has suddenly increased, and there is a possibility that still more will begin operating on the bank in the near future (Mendis, 1965). The increased fishing effort with the possibility of still further increase calls for proper management practices by those concerned, in order to obtain the maximum sustained yield from the demersal stock. For this purpose a detailed study of the past performance of the fishery is essential. With this in view all records of commercial operations up to 1960 are being analysed by the present author and are to be published in a series. This is the first paper in the series and gives a detailed analysis of the first commercial trawling operations from 1928 to 1935. Since there had been a major break of about 10 years between this and the present fishery this data is being analysed separately.
Resumo:
Kalyani lake (P sub(1)), a weed infested recreational water body and a weed chocked derelict water body (P sub(2)) in the heart of Kalyani city of West Bengal were studied for a period of one year for their primary productivity and other physicochemical parameters. Very low primary productivity (GPP=360-1237mg C m super(-2) d super(-1); NPP=157-787 mg C m super(-2) d super(-1)) was recorded in P sub(2) in spite of having a high concentration of nutrients (PO sub(4)–P=0.052-0.260mg l super(- 1); NO sub(3)-N=0.110-0.412mg l super(-1)). On the other hand, moderate primary productivity (GPP=1687-3195mg C m super(-2) d super(-1); NPP=900-2700mg C m super(-2) d super(-1)) was found in P sub(1) with comparatively low range of nutrients (P0 sub(4)-P =0.010-0.058mg l super(-1); NO sub(3)-N=0.032-0.118mg l super(-1)). After studying the other physicochemical parameters (temperature, transparency, dissolved oxygen, free carbon dioxide, pH, alkalinity and macrophytic biomass), it was found that the overall hydro-biological conditions of the weed-chocked derelict water body (P sub(2)) is not congenial for biological production as compared to Kalyani Lake (P sub(1)). Kalyani Lake may be used for fish culture with proper management practices.
Resumo:
Physicochemical parameters of 31 fish pond water samples of Tripura were studied to ascertain the nutrient profile of acidic soil zone and the impact of water acidity towards aquaculture productivity. The pH was acidic (mean 6.63±0.44) with high Fe (mean1.04±0.40 mglˉ¹) and AI (mean 2.67±2.41 mglˉ¹) contents. These were mostly responsible for pond water acidity and poor productivity with low nitrogen, phosphate and total alkalinity. The study also showed strong negative relationship between water pH and redox potential (R²=0.5251). However, pH was positively significant with electrical conductivity. The roles of redox potential and electrical conductivity in water acidity were found highly important. Available calcium content was also found low (mean 2.91±2.96 mglˉ¹). Elevating level of pH of pond water could be the possible management practices in acidic water so that such unproductive water might be productive enough with higher phosphate and nitrogen levels for better biological production.
Resumo:
The study has been undertaken in Kerala State in India with an overall objective of analyzing the bio-economic conditions of commercially exploited marine fishes for assessing their sustainability in the context of existing management practices. Maximum sustainable yield, maximum economic yield and open access levels of yield and effort were analyzed using Gompertz-Fox growth model. The study concluded that the fishing effort exceeded the economically optimal levels and there is unnecessary wastage of money, manpower and fuel in the fishing industry. The study stressed the urgent need for capture fisheries management in the State which at present follows an open access fishery where regulations exist only in the form of seasonal closure in the monsoon season.
Resumo:
Thai pangas, Pangasius hypophthalmus is one of the important aquaculture species in Bangladesh. Over the last few years spectacular development has been taking place in Thai pangas farming in Mymensingh district. Due to availability of easy breeding and culture techniques as well as quick return, more and more people are converting their rice fields into pangas farms overnight. The present study was carried out to examine health and disease status of Thai pangas mainly through clinical, histopathological and bacteriological techniques. In addition, for collecting primary data on disease and health status of Thai pangas and the resultant socioeconomic impacts on rural households, questionnaire interview and participatory rural appraisal tools were used with selected farming households in three upazilas of Mymensingh district. The most prevalent diseases as reported by the farmers were red spot, followed by anal protrusion, tail and fin rot, pop eye, dropsy and gill rot. Other conditions like cotton wool type lesion, ulceration and white spot were reported but with lower incidence. Four isolates of Aeromonas hydrophila were recovered from kidney and lesion of diseased fish. Hemorrhage over the body especially near mouth and caudal region was noticed in the fishes associated with aeromonad infection. Internally, kidney, liver and spleen became swollen and enlarged. The isolates varied with their pathogenicity. All the four isolates were sensitive to Nitrofurantoin, Cotrimoxazole and Tetracycline but were resistant to Amoxycilline. An attempt was made to treat diseased fish with extracts from neem leaf, garlic and turmeric. Recovery of infection was monitored through mortality and histopathology. General histopathological changes of different organs were also studied. Extract from neem (Azadirachta indica) leaf gave better result. Telangiectasis, lamellar hypertrophy and hyperplasia hemorrhage, lamellar fusion, necrosis of lamellar epithelial cells, presence of parasites and their cysts were the major pathology of gills. Hemorrhagic lesion, pyknotic nuclei and melanomacrophage centers (MMC) were found in the liver of fish. Major pathologies in kidney of fish included presence of MMC, necrotic and ruptured kidney tubules, severe haemopoietic necrosis, and hemorrhage. The economic loss due to disease in Thai pangas farming was estimated from the difference between expected production and actual production. On an average, Thai pangas farmers of Mymensingh incur a loss of Tk. 23,104/ha/cycle due to fish disease (3.6% of expected total production). The loss, however, varied with location and size of farms, type of farmers and management practices. The study also highlighted fish health management related problems and recommended further work for the development of user-friendly farmer-oriented fish health management packages.
Resumo:
Philippine coastal communities can become capable fishery resource managers and that their management practices can become largely self-sustaining if the project approach focuses on assisting fishermen to learn how to help themselves. Community organization is an essential part of the process and should not be viewed as an end product in itself. There are also no quick fixes, and projects require a complex array of activities if large numbers of coastal residents are to be assisted. In some of these projects, the control of illegal fishing combined with limiting of commercial fishing to offshore areas and good coastal habitat management resulted in a doubling of daily fish catch and income for small-scale fishermen. However, even with the best of management, the total fishery harvest is limited and further increases in individual fishing income can only come from reducing total fishing effort. This will require a system of control on access to the resource to limit the number and kind of fishing gears and to divide the resource equitably. Assisting coastal communities to devise and implement realistic equitable access controls is the major challenge facing coastal resource co-management.