56 resultados para invasive plant
Resumo:
Two new populations and the host plant of the rarely encountered Galapagos endemic moth Epiplema becki were found on Isabela Island, on Wolf and Sierra Negra volcanoes, with a sighting on Darwin Volcano. The host plant is the native Duranta dombeyana (Verbenaceae). The habitats where all known specimens were collected were Scalesia forest with Duranta bushes. To ensure the conservation of E. becki, we recommend control of introduced species in its habitat. CDF Contribution Number 1010.
Resumo:
Predicting and averting the spread of invasive species is a core focus of resource managers in all ecosystems. Patterns of invasion are difficult to forecast, compounded by a lack of user-friendly species distribution model (SDM) tools to help managers focus control efforts. This paper presents a web-based cellular automata hybrid modeling tool developed to study the invasion pattern of lionfish (Pterois volitans/miles) in the western Atlantic and is a natural extension our previous lionfish study. Our goal is to make publically available this hybrid SDM tool and demonstrate both a test case (P. volitans/miles) and a use case (Caulerpa taxifolia). The software derived from the model, titled Invasionsoft, is unique in its ability to examine multiple default or user-defined parameters, their relation to invasion patterns, and is presented in a rich web browser-based GUI with integrated results viewer. The beta version is not species-specific and includes a default parameter set that is tailored to the marine habitat. Invasionsoft is provided as copyright protected freeware at http://www.invasionsoft.com.
Resumo:
The Indo-Pacific lionfish, Pterois miles and P. volitans, have recently invaded the U.S. east coast and the Caribbean and pose a significant threat to native reef fish communities. Few studies have documented reproduction in pteroines from the Indo-Pacific. This study provides a description of oogenesis and spawn formation in P. miles and P. volitans collected from offshore waters of North Carolina, U.S.A and the Bahamas. Using histological and laboratory observations, we found no differences in reproductive biology between P. miles and P. volitans. These lionfish spawn buoyant eggs that are encased in a hollow mass of mucus produced by specialized secretory cells of the ovarian wall complex. Oocytes develop on highly vascularized peduncles with all oocyte stages present in the ovary of spawning females and the most mature oocytes placed terminally, near the ovarian lumen. Given these ovarian characteristics, these lionfish are asynchronous, indeterminate batch spawners and are thus capable of sustained reproduction throughout the year when conditions are suitable. This mode of reproduction could have contributed to the recent and rapid establishment of these lionfish in the northwestern Atlantic and Caribbean.
Resumo:
Lionfish, Pterois volitans and P. miles, are native to the Indo-Pacific and have recently invaded the Western Atlantic Ocean. Strategies for control of this invasion have included limited removal programs and promotion of lionfish consumption at both local and commercial scales. We demonstrate that lionfish meat contains higher levels of healthy n-3 fatty acids than some frequently consumed native marine fish species. Mean lionfish fillet yield was 30.5% of the total body wet weight, a value that is similar to that of some grouper and porgy species. A sensory evaluation indicated that lionfish meet the acceptability threshold of most consumers.
Resumo:
This report describes a surveillance strategy to detect deepwater invasive species in the Northwestern Hawaiian Islands. A need for this strategy was identified in the Papahānaumokuākea Marine National Monument Management Plan and the Monument’s Draft Natural Resources Science Plan. This strategy focuses on detecting two species of concern, the octocoral Carijoa riisei and the red alga Hypnea musciformis. Most research on invasive species in the Hawaiian archipelago has focused on shallow water habitats within the limits of conventional SCUBA (0-30 m). Deeper habitats such as mesophotic reefs are much more difficult to access and consequently little is known about the distribution of deepwater invasive species or their impacts. Recent deepwater (>30 m) sightings of H. musciformis and C. riisei, in and near NWHI, respectively, have prompted a call for further research and surveillance of invasive species in deepwater habitats. This report compiles the most up to date information about these two species of concern in deepwater habitats. A literature search and conversations with subject matter experts was used to identify their current distribution, preferred habitat types, optimal detection methods and ways to efficiently sample the vast extent of NWHI. The proposed sampling strategy prioritizes survey effort where C. riisei and H. musciformis are most likely to be found. At coarse spatial scales (tens to hundreds of kilometers), opportunistic observations and distance from the Main Hawaiian Islands, a principal propagule source, are used to identify high-risk islands and banks. At fine spatial scales (meters to tens of kilometers) a habitat suitability model was developed to identify high-risk habitats. The habitat suitability model focused on habitat preferences of C. riisei, since the species is well studied and adequate data exists to map habitats. There was insufficient information to identify suitable habitat for H. muscifomis. Habitat preferences for the algae are poorly understood and there is a lack of data at relevant spatial scales to map those preferences which are known. The principal habitats identified by the habitat suitability model were ledges and the edges of rugose coral reefs, where the shade loving octocoral would likely be found. Habitat suitability maps were developed for seven atolls and banks to aid in survey site selection. The protocol relied on technical divers to conduct visual surveys of benthic habitats. It was developed to increase the efficiency of surveys, maximize the probability of detection, identify important information relevant to future surveys and standardize results. The strategy, model and protocol were tested during a field mission in 2009 at several atolls and islands in NWHI. The field mission did not detect any invasive species among deepwater habitats and much was learned to improve future surveys. Data gaps and improvements are discussed.
Resumo:
The invasive colonial tunicate Didemnum vexillum has become widespread in New England waters, colonizing large areas of shell-gravel bottom on Georges Bank including commercial sea scallop (Placopecten magellanicus) grounds. Didemnum vexillum colonies are also fouling coastal shellfish aquaculture gear which increases maintenance costs and may affect shellfish growth rates. We hypothesized that D. vexillum will continue to spread and may affect shellfish larval settlement and survival. We conducted a laboratory experiment to assess interactions between larval bay scallops (Argopectin irradians irradians) and D. vexillum. We found that larval bay scallops avoid settling on D. vexillum colonies, possibly deterred by the low pH of the tunicate’s surface tissue. The results of this study suggest that widespread colonization of substrata by D. vexillum could affect scallop recruitment by reducing the area of quality habitats available for settlement. We propose that the bay scallop can serve as a surrogate for the sea scallop in estimating the negative impact D. vexillum could have on the recruitment of sea scallops on Georges Bank.
Resumo:
The Indo-Pacific lionfishes, Pterois miles and P. volitans, are now established along the U.S. southeast coast, Bermuda, Bahamas, and are becoming established in the Caribbean. While these lionfish are popular in the aquarium trade, their biology and ecology are poorly understood in their native range. Given the rapid establishment and potential adverse impacts of these invaders, comprehensive studies of their biology and ecology are warranted. Here we provide a synopsis of lionfish biology and ecology including invasion chronology, taxonomy, local abundance, reproduction, early life history and dispersal, venomology, feeding ecology, parasitology, potential impacts, and control and management. This information was collected through review of the primary literature and published reports and by summarizing current observations. Suggestions for future research on invasive lionfish in their invaded regions are provided.
Resumo:
The Indo-Pacific lionfishes, Pterois miles and P. volitans, are now established along the Southeast U.S. and Caribbean and are expected to expand into the Gulf of Mexico and Central and South America. Prior to this invasion little was known regarding the biology and ecology of these lionfishes. I provide a synopsis of chronology, taxonomy, local abundance, reproduction, early life history and dispersal, venomology, feeding ecology, parasitology, potential impacts, and possible control and management strategies for the lionfish invasion. This information was collected by review of the literature and by direct field and experimental study. I confirm the existence of an unusual supraocular tentacle phenotype and suggest that the high prevalence of this phenotype in the Atlantic is not the result of selection, but likely ontogenetic change. To describe the trophic impacts of lionfish, I report a comprehensive assessment of diet that describes lionfish as a generalist piscivore that preys on over 40 species of teleost comprising more than 20 families. Next, I use the histology of gonads to describe both oogenesis and reproductive dynamics of lionfish. Lionfish mature relatively early and reproduce several times per month throughout the entire calendar year off North Carolina and the Bahamas. To investigate predation, an important component of natural mortality, I assessed the vulnerability of juvenile lionfish to predation by native serranids. Juvenile lionfish are not readily consumed by serranids, even after extreme periods of starvation. Last, I used a stage-based, matrix population model to estimate the scale of control that would be needed to reduce an invading population of lionfish. Together, this research provides the first comprehensive assessment on lionfish biology and ecology and explains a number of life history and ecological interactions that have facilitated the unprecedented and rapid establishment of this invasive finfish. Future research is needed to understand the scale of impacts that lionfish could cause, especially in coral reef ecosystems, which are already heavily stressed. This research further demonstrates the need for lionfish control strategies and more rigorous prevention and early detection and rapid response programs for marine non-native introductions.
Resumo:
This protocol was developed by the Biogeography Branch of NOAA’s Center for Coastal Monitoring and Assessment to support invasive species research by the Papahānaumokuākea Marine National Monument. The protocol’s objective is to detect Carijoa riisei and Hypnea musciformis in deepwater habitats using visual surveys by technical divers. Note: This protocol is designed to detect the presence or absence of invasive species. A distinct protocol is required to collect information on abundance and impact, or monitor changes over time.