40 resultados para flooding


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coastal and marine ecosystems support diverse and important fisheries throughout the nation’s waters, hold vast storehouses of biological diversity, and provide unparalleled recreational opportunities. Some 53% of the total U.S. population live on the 17% of land in the coastal zone, and these areas become more crowded every year. Demands on coastal and marine resources are rapidly increasing, and as coastal areas become more developed, the vulnerability of human settlements to hurricanes, storm surges, and flooding events also increases. Coastal and marine environments are intrinsically linked to climate in many ways. The ocean is an important distributor of the planet’s heat, and this distribution could be strongly influenced by changes in global climate over the 21st century. Sea-level rise is projected to accelerate during the 21st century, with dramatic impacts in low-lying regions where subsidence and erosion problems already exist. Many other impacts of climate change on the oceans are difficult to project, such as the effects on ocean temperatures and precipitation patterns, although the potential consequences of various changes can be assessed to a degree. In other instances, research is demonstrating that global changes may already be significantly impacting marine ecosystems, such as the impact of increasing nitrogen on coastal waters and the direct effect of increasing carbon dioxide on coral reefs. Coastal erosion is already a widespread problem in much of the country and has significant impacts on undeveloped shorelines as well as on coastal development and infrastructure. Along the Pacific Coast, cycles of beach and cliff erosion have been linked to El Niño events that elevate average sea levels over the short term and alter storm tracks that affect erosion and wave damage along the coastline. These impacts will be exacerbated by long-term sea-level rise. Atlantic and Gulf coastlines are especially vulnerable to long-term sea-level rise as well as any increase in the frequency of storm surges or hurricanes. Most erosion events here are the result of storms and extreme events, and the slope of these areas is so gentle that a small rise in sea level produces a large inland shift of the shoreline. When buildings, roads and seawalls block this natural migration, the beaches and shorelines erode, threatening property and infrastructure as well as coastal ecosystems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This report describes the creation and assessment of benthic habitat maps for shallow-water (<30m) marine environments of the Guánica/Parguera and Finca Belvedere Natural Reserve in southwest Puerto Rico. The objective was to provide spatially-explicit information on the habitat types, biological cover and live coral cover of the region’s coral reef ecosystem. These fine-scale habitat maps, generated by interpretation of 2010 satellite imagery, provide an update to NOAA’s previous digital maps of the U.S. Caribbean (Kendall et al., 2001) for these areas. Updated shallow-water benthic habitat maps for the Guánica/Parguera region are timely in light of ongoing restoration efforts in the Guánica Bay watershed. The bay is served directly by one river, the Rio Loco, which flows intermittently and more frequently during the rainy season. The watershed has gone through a series of manipulations and alterations in past decades, mainly associated with agricultural practices, including irrigation systems, in the upper watershed. The Guánica Lagoon, previously situated to the north of the bay, was historically the largest freshwater lagoon in Puerto Rico and served as a natural filter and sediment sink prior to the discharge of the Rio Loco into the Bay. Following alterations by the Southwest Water Project in the 1950s, the Lagoon’s adjacent wetland system was ditched and drained; no longer filtering and trapping sediment from the Rio Loco. Land use in the Guánica Bay/Rio Loco watershed has also gone through several changes (CWP, 2008). Similar to much of Puerto Rico, the area was largely deforested for sugar cane cultivation in the 1800s, although reforestation of some areas occurred following the cessation of sugar cane production (Warne et al., 2005). The northern area of the watershed is generally mountainous and is characterized by a mix of forested and agricultural lands, particularly coffee plantations. Closer to the coast, the Lajas Valley Agricultural Reserve extends north of Guánica Bay to the southwest corner of the island. The land use practices and watershed changes outlined above have resulted in large amounts of sediment being distributed in the Rio Loco river valley (CWP, 2008). Storm events and seasonal flooding also transport large amounts of sediment to the coastal waters. The threats of upstream watershed practices to coral reefs and the nearshore marine environment have been gaining recognition. Guánica Bay, and the adjacent marine waters, has been identified as a “management priority area” by NOAA’s Coral Reef Conservation Program (CRCP, 2012). In a recent Guánica Bay watershed management plan, several critical issues were outlined in regards to land-based sources of pollution (LBSP; CWP, 2008). These include: upland erosion from coffee agriculture, filling of reservoirs with sediment, in-stream channel erosion, loss of historical Guánica lagoon, legacy contaminants and sewage treatment (CWP, 2008). The plan recommended several management actions that could be taken to reduce impacts of LBSP, which form the basis of Guánica watershed restoration efforts.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A distinct, 1- to 2-cm-thick flood deposit found in Santa Barbara Basin with a varve-date of 1605 AD ± 5 years testifies to an intensity of precipitation that remains unmatched for later periods when historical or instrumental records can be compared against the varve record. The 1605 AD ± 5 event correlates well with Enzel's (1992) finding of a Silver Lake playa perennial lake at the terminus of the Mojave River (carbon-14-dated 1560 AD ± 90 years), in relative proximity to the rainfall catchment area draining into Santa Barbara Basin. According to Enzel, such a persistent flooding of the Silver Lake playa occurred only once during the last 3,500 years and required a sequence of floods, each comparable in magnitude to the largest floods in the modern record. To gain confidence in dating of the 1605 AD ± 5 event, we compare Southern California's sedimentary evidence against historical reports and multi-proxy time-series that indicate unusual climatic events or are sensitive to changes in large-scale atmospheric circulation patterns. The emerging pattern supports previous suggestions that the first decade of the 17th century was marked by a rapid cooling of the Northern Hemisphere, with some indications for global coverage. A burst of volcanism and the occurrence of El Nino seem to have contributed to the severity of the events. The synopsis of the 1605 AD ± 5 years flood deposit in Santa Barbara Basin, the substantial freshwater body at Silver Lake playa, and much additional paleoclimatic, global evidence testifies for an equatorward shift of global wind patterns as the world experienced an interval of rapid, intense, and widespread cooling.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

EXTRACT (SEE PDF FOR FULL ABSTRACT): After 1960, the Santa Cruz River at Tucson, Arizona, an ephemeral stream normally dominated by summer floods, experienced an apparent increased frequency of flooding coincident with an increased percentage of annual floods occurring in fall and winter. This shift reflects large-scale and low-frequency changes in the eastern Pacific Ocean, in part associated with El Niño-Southern Oscillation (ENSO) phenomena. ... Questions are raised about the validity of standard methods of flood-frequency analysis to estimate regulatory and designed floods.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

EXTRACT (SEE PDF FOR FULL ABSTRACT): The Holocene history of flooding in northern coastal Peru is believed to be a proxy record for the El Niño phenomenon. A recently completed set of 30 radiocarbon dates on overbank flood deposits and a tsunami deposit from the Casma region (Figure 1 and Table 1) establishes a chronology for the largest events that have occurred during the last 3500 years. ... The data presented here indicate that events much larger than the one in 1982-1983 may occur with a frequency of about once every 1000 years.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

EXTRACT (SEE PDF FOR FULL ABSTRACT): We examined atmospheric circulation conditions conducive to occurrence of winter floods that exceed the 10-year peak discharge on rivers in six hydroclimatic subregions in Arizona, southern Utah, Nevada, and California. ... This relationship between flooding and broad-scale atmospheric patterns in the modern record will aid in paleoclimatic interpretations of paleoflood records over the last few thousand years.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

From 1987 through 1992, California endured 6 consecutive years of drought for the second time this century. The drought was broken in most parts of the state by a wet year in 1993, in which runoff was 125 percent of average. But 1994 was again critically dry, with runoff only 40 percent of average statewide, raising fears that the drought had resumed. The "drought watch" of 1994 was finally washed out to sea by two large floods (January and March), which made 1995 one of the wettest years this century and refilled all but a couple of California's major reservoirs. This paper provides information on water conditions and flooding in 1995 and some comparisons with previous years.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The purpose of this paper is to summarize the biggest northern California floods of the 20th century. Flooding in California can occur from different causes. At least three types of floods occur: 1. Winter general floods, which cover a large area. 2. Spring and early summer snowmelt floods unique to the higher-elevation central and southern Sierra Nevada, which occur about once in 10 years on the average. 3. Local floods from strong thunderstorms, with intense rain over a relatively small area. These originate in moist tropical or subtropical air and include the flash floods of the desert and other areas of southern California when remnants of eastern Pacific hurricanes get carried into the state.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

During the rollout of CGIAR Research Program on Aquatic Agricultural Systems (AAS) in Tonle Sap in 2013, water management was highlighted as one of the key development challenges. With limited capacity to regulate water, the situation oscillates between too much water in the wet season and too little water in the dry season. Access to and availability of water were seen by local communities as major limitations for aquatic and agricultural production, impacting on functions that include the lake fishery, intensive (dry season) rice crops, recession rice, rainfed rice and floating rice by the lakeside. For both fish and rice production, water and water management are determined principally by the natural flooding of the Tonle Sap Lake. This study is based on a community survey on water access, availability and management and was conceived out of the AAS consultation process and was developed to help identify existing practices in water use and management, as well as best practices where lessons can be learned and promising activities scaled out to other communities. The community survey also aims to understand, identify and analyze constraints and opportunities related to water, and includes a gender perspective to better understand the role of women in water management and use.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Southeast region of the country has hot and dry weather which causes to happen heavy rainfall in short time period of warm seasons and to occur river flooding. These precipitations are influenced by monsoon system of India ocean. In these thesis, It was tried to evaluate the relation between thermal anomaly of sea surface in India ocean and Arab sea which effects on southeast monsoon precipitations of Iran, For evaluation of this happening in southeast, data were collected from 7 synoptic observation stations of Bandar Abbas, Minab, Kerman , Bam, Chabahar, Iranshahr, Zahedan and 17 rain gauge stations during June to September of each year from 1980 to 2010. Rainy days were determine and then some information about synoptic circulation models, maps of average pressure of sea surface, geopotential height of 700hP surface, geopotential height of 500hP surface, temperature of 850 hPa surface, humidity of 700 hPa surface, vertical velocity of 700 hPa surface, vertical velocity of 500 hP and humidity of 2 meters height for 6 systems were extracted from NCEP/NCAR website for evaluation. By evaluation of these systems it was determined that the monsoon low pressure system tab brings needed humidity of these precipitations to this region from India ocean and Arab sea with a vast circulation. It is seen that warm air pool locates on Iran and cold air pool locates on west of India at 800 hPa surface. In a rainy day this warm air transfers to high latitudes and influences the temperature trough of southeast cold air pool of the country. In the middle surfaces of 700 and 500 hPa, the connection between low height system above India and low height system above the higher latitudes causes the low height system above India to be strength and developed. By evaluation of humidity at 2 meters height and 700 hPa surface we observe that humidity Increases in the southeast region. With penetrating of the low height system of India above the 700 and 500 hPa surfaces of southeast of Iran, the value of negative omega (Rising vertical velocity) is increased. In the second pace, it was shown the evaluation of how the correlation between sea surface temperature anomaly in India Ocean and Arab sea influences southeast monsoon precipitation of Iran. For this purpose the data of water surface temperature anomaly of Arab sea and India ocean, the data of precipitation anomaly of 7 synoptic stations , mentioned above, and correlation coefficient among the data of precipitation anomaly and water surface temperature anomaly of Arab Sea, east and west of India ocean were calculated. In conclusion it was shown that the maximum correlation coefficient of precipitation anomaly had belonged to India Ocean in June and no meaningful correlation was resulted in July among precipitation anomaly and sea surface temperature anomaly for three regions, which were evaluated.