98 resultados para cultured
Resumo:
Common carp is one of the most important cultured freshwater fish species in the world. Its production in freshwater areas is the second largest in Europe after rainbow trout. Common carp production in Europe was 146,845 t in 2004 (FAO Fishstat Plus 2006). Common carp production is concentrated mainly in Central and Eastern Europe. In Hungary, common carp has been traditionally cultured in earthen ponds since the late 19th century, following the sharp drop in catches from natural waters, due to the regulation of main river systems. Different production technologies and unintentional selection methods resulted in a wide variety of this species. Just before the intensification of rearing technology and the exchange of stocking materials among fish farms (early sixties), “landraces” of carp were collected from practically all Hungarian fish farms into a live gene bank at the Research Institute for Fisheries, Aquaculture and Irrigation (HAKI) at Szarvas (Bakos and Gorda 1995; Bakos and Gorda 2001). In order to provide highly productive hybrids for production purposes starting from 1964, different strains and crosses between Hungarian landraces were created and tested. During the last 40 years, approximately 150 two-, three-, and four-line hybrids were produced. While developing parental lines, methods of individual selection, inbreeding, backcrossing of lines, gynogenesis and sex reversal were used. This breeding program resulted in three outstanding hybrids: “Szarvas 215 mirror” and “Szarvas P31 scaly” for pond production, and “Szarvas P34 scaly” for angling waters. Besides satisfying the needs of industry, the live gene bank helped to conserve the biological diversity of Hungarian carp landraces. Fifteen Hungarian carp landraces are still maintained today in the gene bank. Through exchange programs fifteen foreign carp strains were added to the collection from Central and Eastern Europe, as well as Southeast Asia (Bakos and Gorda 2001). Besides developing the methodology to maintain live specimens in the gene bank, the National Carp Breeding Program has been initiated in cooperation with all the key stakeholders in Hungary, namely the National Association of Fish Producers (HOSZ), the National Institute for Agricultural Quality Control (OMMI), and the Research Institute for Fisheries, Aquaculture and Irrigation (HAKI). In addition, methodologies or technologies for broodstock management and carp performance testing have been developed. This National Carp Breeding Program is being implemented successfully since the mid-1990s.
Resumo:
Induced breeding technique by hypophysation is being applied at the Kainji Lake Research Institute Fisheries Division Hatchery complex in New Bussa, Nigeria, for the production of Clarias fry and fingerlings in indoor and outdoor concrete tank systems. The hatchlings are fed on livefood (zooplankton) and artificial feed. Source of zooplankton is from cultured stock which is maintained throughout the breeding season by fertilization. Production values show that an average of over 4,000 hatchlings (larvae) can be produced by a female breeder (over-700g wt) and percentage survival after two months ranges between 70 to 75%. With the proposed modification and expansion project, an estimated production of over 0.5 million fingerlings per breeding season is projected
Resumo:
Studies in fish feed technology revealed that there is a potential for big time investment into fish feed production and marketing in view of the growing awareness of fish farming in Nigeria. Intensification of aquaculture is one of the primary methods of food (finfish) production which requires technical knowledge and expertise in the formulation and manufacture of adequate feeds for the cultured species. Studies also revealed that all sort of food items were used by fish farmers ranging from animal dung, groundnut cake etc, to culture fish to table size because of non-availability of rightly prepared feeds. Inadequate knowledge of detailed requirements of tropical cultured species was found to pose a hindrance to formulation despite the fact that a lot has been accumulated in terms of biochemical and nutritive values of food sources in Nigeria. The investigation further revealed the challenges posed to researchers in aquaculture, fish nutritionists and fisheries biologists among others to elucidate the complete requirements of local fish species in terms of their protein, lipid and carbohydrate requirements such that their patents could be made available to companies like PFIZER, IBRU etc, and individuals alike to make commercialization of fish feeds a reality
Resumo:
A review is made of some of the methods that can be used for mass cultivation of natural fish food and the types of organisms that are cultured, which include various algae and zooplankton. Some examples are given of successful case histories in the mass cultivation of natural fish food in order to stimulate the interest of Nigerian scientists on research activities of live fish food for use by fish farmers in the country
Resumo:
Sustainable aquaculture Peter Edwards writes on rural aquaculture Edwards, P. Mussel farming initiatives in North Kerala, India: A case of successful adoption of technology leading to rural livelihood transformation Laxmilatha, P., Thomas, S., Asokan, P.K., Surendranathan, V.G., Sivadasan, M.P., and Ramachandran, N.P. Selective study on the availability in indigenous fish species having ornamental value in some districts of West Bengal Panigrahi, A.K., Dutta, S. and Ghosh, I. Aquaculture livelihoods service centres in Aceh, Indonesia: A novel approach to improving the livelihoods of small scale fish farmers Ravikumar, B. and Yamamoto, K. Research and farming techniques e-Sagu Aqua - an innovative information and communication technology model for transfer of technology for aquaculture Vimala, D. D., Ravisankar, T., Mahalakshmi, P., and Kumaran, M. Freshwater pearl crop: an emerging enterprise in the Indian subcontinent Misra, G., Jena, J. and Kumar, K. Genetics and biodiversity Preliminary risk assessment of Pacific white leg shrimp (P. vannamei) introduced to Thailand for aquaculture Senanan, W., Panutrakul, S., Barnette, P., Chavanich, S., Mantachitr, V., Tangkrock-Olan, N., and Viyakarn, V. Farmer profile Aquatic animal health Asian fish health experts visit Australia Olsen, L. and Ingram, B. (Fisheries Victoria) Black gill disease of cage-cultured ornate rock lobster Panulirus ornatus in central Vietnam caused by Fusarium species Nha, V.V., Hoa, D.T. and Khoa, L.V. Marine Finfish Aquaculture Network Effects of the partial substitution fish oil by soybean oil in the diets on muscle fatty acid composition of juvenile cobia (Rachycentron canadum) Hung, P.D. and Mao, N.D. Growth response of cobia Rachycentron canadum (Pisces: Rachycentridae) under the hypersaline conditions of the Emirate of Abu Dhabi Yousif, O.M.*, Kumar, K.K. and Abdul-Rahman, A.F.A. NACA Newsletter
Resumo:
The study examines the integration of cultural, economic and environmental requirements for fish production in Borno State, Nigeria. A reconnaissance survey was conducted transferring some selected Local Government Areas. 60 questionnaires were administered in the six Local Governments representing Southern Borno State with Biu and Shani, central Borno with Konduga & Jere and Northern Borno with Gubia and Kukawa respectively. There is no cultural constraint to fish production but about 63% prefers to invest in other farming activities than in fish farming. 33% are not aware that fish can be cultured apart from getting it from the wild. 35% have the impression that fish farming ventures can be handled by government only. The economic earnings for fish production are high especially in some parts of Northern Borno, but the Local market potentials throughout the state are great. Nigeria has suitable soil for ponds apart from few locations at the central and Northern Borno that are made by sandy soil. Numerous perennial and seasonal rivers, streams, lakes, pools and flood plains adequate for fish culture especially in Southern Borno exist. The mean annual rainfall can result in some water storage in ponds. In areas where the annual precipitation is less than 550mm, exist few flow boreholes with potentials for fish production. The temperature regime may support growth and survival of fish even during the hottest months of the year (March, April and May). With the understanding and manipulation of these requirements, fish production in Nigeria can be greatly enhanced
Resumo:
The effects of light duration on the growth and performance of Clarias gariepinus fingerlings were investigated using artificial methods to simulate continuous day length and absolute darkness. The normal day length (12-H Light and 12-H Darkness) served as the control. Among some of the factors affected by the varying photoperiods there were body coloration, feeding efficiency, survival rate and Specific Growth Rate (SGR). There was notably no significant difference between the SGR of the 0-photoperiod culture and the control (P>0.05) but there was significant difference between the 0-photoperiod and the 24-H photoperiod experiment (P<0.05). The haematological profile analysed showed various degrees of changes in the blood parameters of fish cultured under different photoperiods. These changes however, did not show significant differences when subjected to statistical analysis
Resumo:
Sarotherodon galilaeus and Oreochromis niloticus are 2 readily available fish species in Nigeria, often cultured interchangeably. The findings are presented of a comparative study conducted to provide information on their performance using similar nutrient loadings without supplemental feed. Results showed a better performance of O.niloticus over S.galilaeus, which may be partly explained by the dietary mechanisms of the fish. Further trials on gut content analyses are required
Resumo:
Fish cage culture is a rapid aquacultural practice of producing fish with more yield compared to traditional pond culture. Several species cultured by this method include Cyprinus carpio, Orechromis niloticus, Sarotherodon galilaeus, Tilapia zilli, Clarias lazera, C. gariepinus, Heterobranchus bidorsalis, Citharinus citharus, Distochodus rostratus and Alestes dentes. However, the culture of fish in cages has some problems that are due to mechanical defects of the cage or diseases due to infection. The mechanical problems which may lead to clogged net, toxicity and easy access by predators depend on defects associated with various types of nets which include fold sieve cloth net, wire net, polypropylene net, nylon, galvanized and welded net. The diseases problems are of two types namely introduced diseases due to parasites. The introduced parasites include Crustaseans, Ergasilus sp. Argulus africana, and Lamprolegna sp, Helminth, Diplostomulum tregnna: Protozoan, Trichodina sp, Myxosoma sp, Myxobolus sp. the second disease problems are inherent diseases aggravated by the very rich nutrient environment in cages for rapid bacterial, saprophytic fungi, and phytoplanktonic bloom resulting in clogging of net, stagnation of water and low biological oxygen demand (BOD). The consequence is fish kill, prevalence of gill rot and dropsy conditions. Recommendations on routine cage hygiene, diagnosis and control procedures to reduce fish mortality are highlighted
Resumo:
Samples of C. gariepinus collected from the wild and cultured populations in Plateau and Niger States of Nigeria were analyzed for length-weight relationship and organ indices (Gonadosomatic index (GSI), hepatosomatic index (HSI), renalsomatic index (RSI) and somatic fat deposit index (PDI). High correlation and linear relationship between body length and body weight was observed in all sample population (P<0.05). A significant difference was observed between the GSI of males and females of both wild and cultured population and also between females of the wild and cultured population,(P < 0.05).There was no significant difference in HSI, CSI RSI and PDI of all the sample populations (P < 0.05).The importance of length-weight relationship and organ indices in fish production are discussed
Resumo:
Nigeria is blessed with an abundant variety of fish species, some of which have been exported over the years. These fish species are taken either from the wild or cultured. Large quantities of fishes and fishery products are exported from Nigeria in different forms and which have been sources of foreign exchange earnings for the Country. An estimate value of exports in the fishery sub-sector stood at approximately U.S. $48.212,070 for shrimps/sole fish/cuttlefish/crabs and over U.S.$500,000 for ornamental live fishes
Resumo:
Details are given of the Institute and its activities, in particular the research projects being undertaken. These include studies on the marine molluscs of Sierra Leone, the cockle fishery, a preliminary investigation on the fouling organisms affecting the raft-cultured oyster populations, larval oyster ecology in relation to oyster culture, preliminary studies on the reproductive cycle of the mangrove oyster (Crassostrea tulipa), and catch composition of fishes taken by beach-seines at Lumley (Freetown). Records of the west African manatee (Trichechus senegalensis) are noted.
Resumo:
Experiments were carried out by the method of direct effect of the tested substance on increase of biomass (1,2). Daphnia magna was cultured under laboratory conditions.The author concludes that concentrations of aniline from 5000 to 0.1 mg/1 appear acutely lethal. The disturbance of feeding, reproduction, the disorganization of the nervous system, speak of the toxicity of the substance.
Resumo:
English: Food selection of first-feeding yellowfin tuna larvae was studied in the laboratory during October 1992. The larvae were hatched from eggs obtained by natural spawning of yellowfin adults held in sea pens adjacent to Ishigaki Island, Okinawa Prefecture, Japan. The larvae were fed mixed-prey assemblages consisting of size-graded wild zooplankton and cultured rotifers. Yellowfin larvae were found to be selective feeders during the first four days of feeding. Copepod nauplii dominated the diet numerically, by frequency of occurrence and by weight. The relative importance of juvenile and adult copepods (mostly cyclopoids) in the diet increased over the 4-day period. Rotifers, although they comprised 31 to 40 percent of the available forage, comprised less than 2.1 percent of the diet numerically. Prey selection indices were calculated taking into account the relative abundances of prey, the swimming speeds of yellowfin larvae and their prey, and the microscale influence of turbulence on encounter rates. Yellowfin selected for copepod nauplii and against rotifers, and consumed juvenile and adult copepods in proportion to their abundances. Yellowfin larvae may select copepod nauplii and cyclopoid juveniles and adults based on the size and discontinuous swimming motion of these prey. Rotifers may not have been selected because they were larger or because they exhibit a smooth swimming pattern. The best initial diet for the culture of yellowfin larvae may be copepod nauplii and cyclopoid juveniles and adults, due to the size, swimming motion, and nutritional content of these prey. If rotifers alone are fed to yellowfin larvae, the rotifers should be enriched with a nutritional supplement that is high in unsaturated fatty acids. Mouth size of yellowfin larvae increases rapidly within the first few days of feeding, which minimizes limitations on feeding due to prey size. Although yellowfin larvae initiate feeding on relatively small prey, they rapidly acquire the ability to add relatively large, rare prey items to the diet. This mode of feeding may be adaptive for the development of yellowfin larvae, which have high metabolic rates and live in warm mixed-layer habitats of the tropical and subtropical Pacific. Our analysis also indicates a strong potential for the influence of microscale turbulence on the feeding success of yellowfin larvae. --- Experiments designed to validate the periodicity of otolith increments and to examine growth rates of yellowfin tuna larvae were conducted at the Japan Sea-Farming Association’s (JASFA) Yaeyama Experimental Station, Ishigaki Island, Japan, in September 1992. Larvae were reared from eggs spawned by captive yellowfin enclosed in a sea pen in the bay adjacent to Yaeyama Station. Results indicate that the first increment is deposited within 12 hours of hatching in the otoliths of yellowfin larvae, and subsequent growth increments are formed dailyollowing the first 24 hours after hatching r larvae up to 16 days of age. Somatic and otolith gwth ras were examined and compared for yolksac a first-feeding larvae reared at constant water tempatures of 26�and 29°C. Despite the more rapid develo of larvae reared at 29°C, growth rates were nnificaifferent between the two treatments. Howeve to poor survival after the first four days, it was ssible to examine growth rates beyond the onset of first feeding, when growth differences may become more apparent. Somatic and otolith growth were also examined for larvae reared at ambient bay water temperatures during the first 24 days after hatching. timates of laboratory growth rates were come to previously reported values for laboratory-reared yelllarvae of a similar age range, but were lower than growth rates reported for field-collected larvae. The discrepancy between laboratory and field growth rates may be associated with suboptimal growth conditions in the laboratory. Spanish: Durante octubre de 1992 se estudió en el laboratorio la seleccalimento por larvaún aleta amarillmera alimentación. Las larvas provinieron de huevos obtenidosel desove natural de aletas amarillas adultos mantenidos en corrales marinos adyacentes a la Isla Ishigaki, Prefectura de Okinawa (Japón). Se alimentó a las larvas con presas mixtas de zooplancton silvestre clasificado por tamaño y rotíferos cultivados. Se descubrió que las larvas de aleta amarilla se alimentan de forma selectiva durante los cuatro primeros días de alimentación. Los nauplios de copépodo predominaron en la dieta en número, por frecuencia de ocurrencia y por peso. La importancia relativa de copépodos juveniles y adultos (principalmente ciclopoides) en la dieta aumentó en el transcurso del período de 4 días. Los rotíferos, pese a que formaban del 31 al 40% del alimento disponible, respondieron de menos del 2,1% de la dieta en número. Se calcularon índices de selección de presas tomando en cuenta la abundancia relativa de las presas, la velocidad de natación de las larvas de aleta amarilla y de sus presas, y la influencia a microescala de la turbulencia sobre las tasas de encuentro. Los aletas amarillas seleccionaron a favor de nauplios de copépodo y en contra de los rotíferos, y consumieron copépodos juveniles y adultos en proporción a su abundancia. Es posible que las larvas de aleta amarilla seleccionen nauplios de copépodo y ciclopoides juveniles y adultos con base en el tamaño y movimiento de natación discontinuo de estas presas. Es posible que no se hayan seleccionado los rotíferos a raíz de su mayor tamaño o su patrón continuo de natación. Es posible que la mejor dieta inicial para el cultivo de larvas de aleta amarilla sea nauplios de copépodo y ciclopoides juveniles y adultos, debido al tamaño, movimiento de natación, y contenido nutritivo de estas presas. Si se alimenta a las larvas de aleta amarilla con rotíferos solamente, se debería enriquecerlos con un suplemento nutritivo rico en ácidos grasos no saturados. El tamaño de la boca de las larvas de aleta amarilla aumenta rápidamente en los primeros pocos días de alimentación, reduciendo la limitación de la alimentación debida al tamaño de la presa. Pese a que las larvas de aleta amarilla inician su alimentación con presas relativamente pequeñas, se hacen rápidamente capaces de añadir presas relativamente grandes y poco comunes a la dieta. Este modo de alimentación podría ser adaptivo para el desarrollo de larvas de aleta amarilla, que tienen tasa metabólicas altas y viven en hábitats cálidos en la capa de mezcla en el Pacífico tropical y subtropical. Nuestro análisis indica también que la influencia de turbulencia a microescala es potencialmente importante para el éxito de la alimentación de las larvas de aleta amarilla. --- En septiembre de 1992 se realizaron en la Estación Experimental Yaeyama de la Japan Sea- Farming Association (JASFA) en la Isla Ishigaki (Japón) experimentos diseñados para validar la periodicidad de los incrementos en los otolitos y para examinar las tasas de crecimiento de las larvas de atún aleta amarilla. Se criaron las larvas de huevos puestos por aletas amarillas cautivos en un corral marino en la bahía adyacente a la Estación Yaeyama. Los resultados indican que el primer incremento es depositado menos de 12 horas después de la eclosión en los otolitos de las larvas de aleta amarilla, y que los incrementos de crecimiento subsiguientes son formados a diario a partir de las primeras 24 horas después de la eclosión en larvas de hasta 16 días de edad. Se examinaron y compararon las tasas de crecimiento somático y de los otolitos en larvas en las etapas de saco vitelino y de primera alimentación criadas en aguas de temperatura constante entre 26°C y 29°C. A pesar del desarrollo más rápido de las larvas criadas a 29°C, las tasas de crecimiento no fueron significativamente diferentes entre los dos tratamientos. Debido a la mala supervivencia a partir de los cuatro primeros días, no fue posibación, uando las diferencias en el crecimiento podrían hacerse más aparentes. Se examinó también el crecimiento somático y de los otolitos para larvas criadas en temperaturas de agua ambiental en la bahía durante los 24 días inmediatamente después de la eclosión. Nuestras estimaciones de las tasas de crecimiento en el laboratorio fueron comparables a valores reportados previamente para larvas de aleta amarilla de edades similares criadas en el laboratorio, pero más bajas que las tasas de crecimiento reportadas para larvas capturadas en el mar. La discrepancia entre las tasas de crecimiento en el laboratorio y el mar podría estar asociada con condiciones subóptimas de crecimiento en el lab
Resumo:
Growth is one of the most important characteristics of cultured species. The objective of this study was to determine the fitness of linear, log linear, polynomial, exponential and Logistic functions to the growth curves of Macrobrachium rosenbergii obtained by using weekly records of live weight, total length, head length, claw length, and last segment length from 20 to 192 days of age. The models were evaluated according to the coefficient of determination (R2), and error sum off square (ESS) and helps in formulating breeders in selective breeding programs. Twenty full-sib families consisting 400 PLs each were stocked in 20 different hapas and reared till 8 weeks after which a total of 1200 animals were transferred to earthen ponds and reared up to 192 days. The R2 values of the models ranged from 56 – 96 in case of overall body weight with logistic model being the highest. The R2 value for total length ranged from 62 to 90 with logistic model being the highest. In case of head length, the R2 value ranged between 55 and 95 with logistic model being the highest. The R2 value for claw length ranged from 44 to 94 with logistic model being the highest. For last segment length, R2 value ranged from 55 – 80 with polynomial model being the highest. However, the log linear model registered low ESS value followed by linear model for overall body weight while exponential model showed low ESS value followed by log linear model in case of head length. For total length the low ESS value was given by log linear model followed by logistic model and for claw length exponential model showed low ESS value followed by log linear model. In case of last segment length, linear model showed lowest ESS value followed by log linear model. Since, the model that shows highest R2 value with low ESS value is generally considered as the best fit model. Among the five models tested, logistic model, log linear model and linear models were found to be the best models for overall body weight, total length and head length respectively. For claw length and last segment length, log linear model was found to be the best model. These models can be used to predict growth rates in M. rosenbergii. However, further studies need to be conducted with more growth traits taken into consideration