190 resultados para ciclismo off-road
Resumo:
With the aid of the German Research Association in the central programme 'Sand movements in the German coastal region', an investigation into the current conditions in the shallow water areas of the coasts of the south-eastern North Sea between Sylt and the Weser estuary was carried out by the author. Foundations of the work are 19 continuous current recordings in five profiles normal to the coast from years 1971 to 1973. Off the coasts of the south-eastern North Sea varying tidal currents impinge; they are currents whose directions may vary periodically through all points of the compass. They are caused by the circulating tides in the North Sea (Amphidromien). The turning flow movement experiences a deformation in the very shallow coastal waters, and as it happens the flow turning movement in the case of high tide continues right up onto the outer flats, while here and in the fore-lying shallow water areas around the time of low water (on account of the small depths of waters), there prevails a more variable current. A result of this hydrodynamical procedure is the development of counter currents. This partial translation of the original paper provides the summary of this study of of the mudflat areas between the Elbe and Weser.
Resumo:
Random Amplified Polymorphic DNA (RAPD) markers and cytochrome b (Cyt-b) gene sequences were utilized to fingerprint and construct phylogenetic relationships among four species of mackerel commonly found in the Straits of Malacca namely Rastrelliger kanagurta, R. brachysoma, Decapterus maruadsi and D. russelli. The UPGMA dendogram and genetic distance clearly showed that the individuals clustered into their own genus and species except for the Decapterus. These results were also supported by partial mtDNA cytochrome b gene sequences (279 bp) which found monotypic sequence for all Decapterus studied. Cytochrome b sequence phylogeny generated through Neighbor Joining (NJ) method was congruent with RAPD data. Results showed clear discrimination between both genera with average nucleotide divergence about 25.43%. This marker also demonstrated R. brachysoma and R. kanagurta as distinct species separated with average nucleotide divergence about 2.76%. However, based on BLAST analysis, this study indicated that the fish initially identified as D. maruadsi was actually D. russelli. The results highlighted the importance of genetic analysis for taxonomic validation, in addition to morphological traits.
Resumo:
We compared numbers of strikes, proportions of fish that hooked up after strikes, proportions of fish that stayed on hook (retained) after hook up, and numbers of fish caught between circle and J hooks rigged with dead natural fish bait (ballyhoo)and trolled for three oceanic predator species: dolphinfish (Coryphaena hippurus), yellowfin tuna (Thunnus albacares), and wahoo (Acanthocybium solandri). Interactions were compared between circle and J hooks fished on 75 trips by two user groups (charter and recreational fishermen). Hooks were affixed to three species-specific leader types most commonly fished in this region: monofilament (dolphinfish), fluorocarbon (tuna), and wire (wahoo). Numbers of fish caught per trip and three potential mechanisms that might inf luence numbers caught (i.e., number of strikes, proportion of fish hooked, and proportion retained) were modeled with generalized linear models that considered hook type, leader type, species, user (fishing) group, and wave height as main effects. Hook type was a main effect at the catch level; generally, more fish were caught on J hooks than on circle hooks. The effect of hook type on strike rates was equivocal. However, J hooks had a greater proportion of hook-ups than did circle hooks. Finally, the proportion of fish retained once hooked was generally equal between hook types. We found similar results when data from additional species were pooled as a “tuna” group and a “mackerel” group. We conclude that J hooks are more effective than circle hooks at the hook-up level and result in greater numbers of troll-caught dolphinfish, tunas
Resumo:
The small-spotted catshark (Scyliorhinus canicula) (Linnaeus, 1758) and the longnose spurdog (Squalus blainville) (Risso, 1826) are two species occurring in the European and western African continental shelves with a wide geographical distribution. In this study, the diet of S. blainville and S. canicula off the Portuguese western Atlantic coast was investigated in 2006 by collecting monthly samples of these two species from local fishing vessels. In the stomachs of both species, crustaceans and teleosts were the dominant prey items, and molluscs, polychaetes, echinoderms, and sipunculids were found in lower abundance. In S. canicula, urochordate and chondrichthyan species were also observed in stomachs and were classified as accidental prey items. Scyliorhinus canicula consumed a broader group of prey items than did S. blainville. A significant diet overlap was observed, despite both species occupying different depth ranges over the continental shelf. Scyliorhinus canicula exhibited a consistency in diet composition among seasons, sexes, and maturity stages. Nonetheless, for both adults and juveniles, an increase in relative abundance of teleosts in the diet was observed in the spring and summer. This study provides evidence of the importance of S. canicula and S. blainville as benthic and pelagic predators along the western Atlantic coast.
Resumo:
We described the diet of the eastern stock of Steller sea lions (Eumetopias jubatus) from 1416 scat samples collected from five sites in Oregon and northern California from 1986 through 2007. A total of 47 prey types from 30 families were identified. The most common prey was Pacific hake (Merluccius productus), followed by salmonids (Oncorhynchus spp.), skates (Rajidae), Pacific lamprey (Lampetra tridentata), herrings (Clupeidae), rockfish (Sebastes spp.), and northern anchovy (Engraulis mordax). Steller sea lion diet composition varied seasonally, annually, and spatially. Hake and salmonids were the most commonly identified prey in scats collected during the summer (breeding season), whereas hake and skate were most common in the nonbreeding season. Continued research on Steller sea lion diet and foraging behavior in the southern extent of their range is necessary to address issues such as climate change, interaction with competing California sea lions, and predation impacts on valuable or sensitive fish stocks.
Resumo:
Commercial fisheries that are managed with minimum size limits protect small fish of all ages and may affect size-selective mortality by the differential removal of fast growing fish. This differential removal may decrease the average size at age, maturation, or sexual transition of the exploited population. When fishery-independent data are not available, a comparison of life history parameters of landed with those of discarded fish (by regulation) will indicate if differential mortality is occurring with the capture of young but large fish (fast growing phenotypes). Indications of this differential size-selective mortality would include the following: the discarded portion of the target fish would have similar age ranges but smaller sizes at age, maturation, and sexual transition as that of landed fish. We examined three species with minimum size limits but different exploitation histories. The known heavily exploited species (Rhomboplites aurorubens [vermilion snapper] and Pagrus pagrus [red porgy]) show signs of this differential mortality. Their landed catch includes many young, large fish, whereas discarded fish had a similar age range and mean ages but smaller sizes at age than the landed fish. The unknown exploited species, Mycteroperca phenax (scamp), showed no signs of differential mortality due to size-selective fishing. Landed catch consisted of old, large fish and discarded scamp had little overlap in age ranges, had significantly different mean ages, and only small differences in size at age when compared to comparable data for landed fish.
Resumo:
Research on assessment and monitoring methods has primarily focused on fisheries with long multivariate data sets. Less research exists on methods applicable to data-poor fisheries with univariate data sets with a small sample size. In this study, we examine the capabilities of seasonal autoregressive integrated moving average (SARIMA) models to fit, forecast, and monitor the landings of such data-poor fisheries. We use a European fishery on meagre (Sciaenidae: Argyrosomus regius), where only a short time series of landings was available to model (n=60 months), as our case-study. We show that despite the limited sample size, a SARIMA model could be found that adequately fitted and forecasted the time series of meagre landings (12-month forecasts; mean error: 3.5 tons (t); annual absolute percentage error: 15.4%). We derive model-based prediction intervals and show how they can be used to detect problematic situations in the fishery. Our results indicate that over the course of one year the meagre landings remained within the prediction limits of the model and therefore indicated no need for urgent management intervention. We discuss the information that SARIMA model structure conveys on the meagre lifecycle and fishery, the methodological requirements of SARIMA forecasting of data-poor fisheries landings, and the capabilities SARIMA models present within current efforts to monitor the world’s data-poorest resources.
Resumo:
Red bream (Beryx decadactylus) is a commercially important deep-sea benthopelagic fish with a circumglobal distribution on insular and continental slopes and seamounts. In the United States, small numbers are caught incidentally in the wreckfish (Polyprion americanus) fishery which operates off the southeastern coast, but no biological information exists for the management of the U.S. red bream population. For this study, otoliths (n=163) and gonads (n=161) were collected from commercially caught red bream between 2003 and 2008 to determine life history parameters. Specimens ranged in size from 410 to 630 mm fork length and were all determined to be mature by histological examination of the gonads. Females in spawning condition were observed from June through September, and reproductively active males were found year-round. Sectioned otoliths were difficult to interpret, but maximum age estimates were much higher than the 15 years previously reported for this species from the eastern North Atlantic based on whole-otolith analysis. Estimated ages ranged from 8 to 69 years, and a minimum lifespan of 49 years was validated by using bomb radiocarbon dating. Natural mortality was estimated at 0.06/yr. This study shows that red bream are longer lived and more vulnerable to overfishing than previously assumed and should be managed carefully to prevent overexploitation.
Resumo:
Commercial catches taken in southwestern Australian waters by trawl fisheries targeting prawns and scallops and from gillnet and longline fisheries targeting sharks were sampled at different times of the year between 2002 and 2008. This sampling yielded 33 elasmobranch species representing 17 families. Multivariate statistics elucidated the ways in which the species compositions of elasmobranchs differed among fishing methods and provided benchmark data for detecting changes in the elasmobranch fauna in the future. Virtually all elasmobranchs caught by trawling, which consisted predominantly of rays, were discarded as bycatch, as were approximately a quarter of the elasmobranchs caught by both gillnetting and longlining. The maximum lengths and the lengths at maturity of four abundant bycatch species, Heterodontus portusjacksoni, Aptychotrema vincentiana, Squatina australis, and Myliobatis australis, were greater for females than males. The L50 determined for the males of these species at maturity by using full clasper calcification as the criterion of maturity did not differ significantly from the corresponding L50 derived by using gonadal data as the criterion for maturity. The proportions of the individuals of these species with lengths less than those at which 50% reach maturity were far greater in trawl samples than in gillnet and longline samples. This result was due to differences in gear selectivity and to trawling being undertaken in shallow inshore waters that act as nursery areas for these species. Sound quantitative data on the species compositions of elasmobranchs caught by commercial fisheries and the biological characteristics of the main elasmobranch bycatch species are crucial for developing strategies for conserving these important species and thus the marine ecosystems of which they are part.
Resumo:
Settled juvenile blue rockfish (Sebastes mystinus) were collected from two kelp beds approximately 335 km apart off Mendocino in northern California and Monterey in central California. A total of 112 rockfish were collected from both sites over 5 years (1993, 1994, 2001, 2002, and 2003). Total age, settlement date, age at settlement, and birth date were determined from otolith microstructure. Fish off Mendocino settled mostly in June and fish off Monterey settled mostly in May (average difference in settlement=23 days). Although the difference in the timing of settlement followed this same pattern for both areas over the five years, settlement occurred later in 2002 and 2003 than in the prior years of sampling. The difference in the timing of settlement was due primarily to differences in birth dates for the two areas. The time of settlement was positively related to upwelling and negatively related to sea level anomaly for most of the months before settlement. Knowledge of the timing of settlement has implications for design and placement of marine protected areas because protection of nursery grounds is frequently a major objective of these protected areas. The timing of settlement is also an important consideration in the planning of surveys of early recruits because mistimed surveys (caused by latitudinal differences in the timing of settlement) could produce biased estimates.
Resumo:
The time series of abundance indices for many groundfish populations, as determined from trawl surveys, are often imprecise and short, causing stock assessment estimates of abundance to be imprecise. To improve precision, prior probability distributions (priors) have been developed for parameters in stock assessment models by using meta-analysis, expert judgment on catchability, and empirically based modeling. This article presents a synthetic approach for formulating priors for rockfish trawl survey catchability (qgross). A multivariate prior for qgross for different surveys is formulated by using 1) a correction factor for bias in estimating fish density between trawlable and untrawlable areas, 2) expert judgment on trawl net catchability, 3) observations from trawl survey experiments, and 4) data on the fraction of population biomass in each of the areas surveyed. The method is illustrated by using bocaccio (Sebastes paucipinis) in British Columbia. Results indicate that expert judgment can be updated markedly by observing the catch-rate ratio from different trawl gears in the same areas. The marginal priors for qgross are consistent with empirical estimates obtained by fitting a stock assessment model to the survey data under a noninformative prior for qgross. Despite high prior uncertainty (prior coefficients of variation ≥0.8) and high prior correlation between qgross, the prior for qgross still enhances the precision of key stock assessment quantities.
Resumo:
The Pacific sardine (Sardinops sagax) is distributed along the west coast of North America from Baja California to British Columbia. This article presents estimates of biomass, spawning biomass, and related biological parameters based on four trawl-ichthyoplankton surveys conducted during July 2003 –March 2005 off Oregon and Washington. The trawl-based biomass estimates, serving as relative abundance, were 198,600 t (coefficient of variation [CV] = 0.51) in July 2003, 20,100 t (0.8) in March 2004, 77,900 t (0.34) in July 2004, and 30,100 t (0.72) in March 2005 over an area close to 200,000 km2. The biomass estimates, high in July and low in March, are a strong indication of migration in and out of this area. Sardine spawn in July off the Pacific Northwest (PNW) coast and none of the sampled fish had spawned in March. The estimated spawning biomass for July 2003 and July 2004 was 39,184 t (0.57) and 84,120 t (0.93), respectively. The average active female sardine in the PNW spawned every 20–40 days compared to every 6–8 days off California. The spawning habitat was located in the southeastern area off the PNW coast, a shift from the northwest area off the PNW coast in the 1990s. Egg production in off the PNW for 2003–04 was lower than that off California and that in the 1990s. Because the biomass of Pacific sardine off the PNW appears to be supported heavily by migratory fish from California, the sustainability of the local PNW population relies on the stability of the population off California, and on local oceanographic conditions for local residence.
Resumo:
Multiyear ichthyoplankton surveys used to monitor larval fish seasonality, abundance, and assemblage structure can provide early indicators of regional ecosystem changes. Numerous ichthyoplankton surveys have been conducted in the northern Gulf of Mexico, but few have had high levels of temporal resolution and sample replication. In this study, ichthyoplankton samples were collected monthly (October 2004–October 2006) at a single station off the coast of Alabama as part of a long-term biological survey. Four seasonal periods were identified from observed and historic water temperatures, including a relatively long (June–October) “summer” period (water temperature >26°C). Fish egg abundance, total larval abundance, and larval taxonomic diversity were significantly related to water temperature (but not salinity), with peaks in the spring, spring–summer, and summer periods, respectively. Larvae collected during the survey represented 58 different families, of which engraulids, sciaenids, carangids, and clupeids were the most prominent. The most abundant taxa collected were unidentified engraulids (50%), sand seatrout (Cynoscion arenarius, 7.5%), Atlantic bumper (Chloroscombrus chrysurus, 5.4%), Atlantic croaker (Micropogonias undulatus, 4.4%), Gulf menhaden (Brevoortia patronus, 3.8%), and unidentified gobiids (3.6%). Larval concentrations for dominant taxa were highly variable between years, but the timing of seasonal occurrence for these taxa was relatively consistent. Documented increases in sea surface temperature on the Alabama shelf may have various implications for larval fish dynamics, as indicated by the presence of tropical larval forms (e.g., fistularids, labrids, scarids, and acanthurids) in our ichthyoplankton collections and in recent juvenile surveys of Alabama and northern Gulf of Mexico seagrass habitats.
Resumo:
Stomach samples from three rockfish species, yellowtail (Sebastes f lavidus), widow (S. entomelas), and canary (S. pinniger) rockfish, seasonally collected off the Pacific Northwest in 1998 and 1999, provided quantitative information on the food habits of these species during and after the 1997–98 El Niño event. Although euphausiids were the most common major prey of all three predators, gelatinous zooplankton and fishes were the most commonly consumed prey items during some seasonal quarters. The influence of the El Niño event was evident in the diets. Anomalous prey items, including the southern euphausiid species Nyctiphanes simplex and juveniles of Pacific whiting (Merluccius productus) frequently appeared in the diets in the spring and summer of 1998. The results of stomach contents analyses, based on 905 stomach samples from 49 trawl hauls during seven commercial fishing trips and from 56 stations during research surveys, were consistent with the timing of occurrence and the magnitude of change in biomass of some zooplankton species reported from zooplankton studies in the northern California Current during the 1997–98 El Niño. Our findings indicate that the observed variations of prey groups in some rockfish diets may be a function of prey variability related to climate and environment changes.