61 resultados para Zero-coupon yield curve
Resumo:
A general model for yield-per-recruit analysis of rotational (periodic) fisheries is developed and applied to the sea scallop (Placopecten magellanicus) fishery of the northwest Atlantic. Rotational fishing slightly increases both yield- and biomass-per-recruit for sea scallops at FMAX. These quantities decline less quickly when fishing mortality is increased beyond FMAX than when fishing is at a constant rate. The improvement in biomass-per-recruit appears to be nearly independent of the selectivity pattern but increased size-at-entry can reduce or eliminate the yield-per-recruit advantage of rotation. Area closures and rotational fishing can cause difficulties with the use of standard spatially averaged fishing mortality metrics and reference points. The concept of temporally averaged fishing mortality is introduced as one that is more appropriate for sedentary resources when fishing mortality varies in time and space.
Resumo:
The annual instantaneous total mortality coefficient (Z) for the prawn Metapenaeus dobsoni has been estimated to range from 0.8 to 5.14 by the cumulative catch curve method. Different methods used in the study resulted in wide ranging values of natural mortality (M) (0.6 to 2.303), but the yield per recruit model when superimposed with the absolute yield values revealed the right order to be > 2. The biologically optimum yield of about 18 thousand tons is obtained for an effort of 2,702 trawlers per day for 215 fishing days when the annual exploitation ratio (E) is about 52%.
Resumo:
MSY per recruit of Tenualosa ilisha in the Meghna river was predicted as 112 g per recruit at the F(msy)=0.6/yr and at T(c)=0.6/yr. But Y/R=95 g per recruit was obtained at the existing fishing level, F=1.14/yr and at T(c)=0.6/yr. Existing F level was nearly double than the F(msy) level. Fishing pressure should be reduced immediately from F=1.14/yr to F(msy)=0.6/yr. F(msy)=1.14/yr was the same at first capture, T(c)=1.0, 1.2 and 1.4/yr, and MSY could be obtained as 142 g, 162 g and 176 g per recruit respectively. It is easier to change the first capture age (Tc) rather than changing off level. So, hilsa fishery manager may adopt F(msy)=1.14/yr while age at first capture must be increased from T(c)=0.6/yr (3 cm size group) to T(c)=1.4/yr (25 cm size group), by which 1.8 times production could be increased than the present production. MSY also possible to obtain as 201 g and 210 g per recruit at F(msy)=2.0/yr and 4.0/yr at T(c)=1.7/yr and 1.9/yr respectively. Under both the situations, hilsa production could be increased 2 times than the present production. To obtain the MSY=210 g per recruit the fishing level could be increased up to F=4.0/yr at T(c)=1.9/yr (34 cm size group). Economic point of view, hilsa fishery managers may choose to obtain the economic MSY as 201 g per recruit at F(msy)=2.0/yr and T(c)=1.7yr (31 cm size group) in the Meghna river of Bangladesh.
Resumo:
The present study deals with the length increment data of 15 adult Labeo rohita (Ham.) over a period of five months by the applicatin of finite difference method at an altitude of 1496 m above mean sea level at Shilllong, Meghalaya.