43 resultados para Weaver, Melanie
Resumo:
Catch rates for the 13 most abundant species caught in the deep-set Hawaii-based longline fishery over the past decade (1996–2006) provide evidence of a change among the top North Pacific subtropical predators. Catch rates for apex predators such as blue shark (Prionace glauca), bigeye (Thunnus obesus) and albacore (Thunnus alalunga) tunas, shortbill spearfish (Tetrapturus angustirostris), and striped marlin (Tetrapturus audax) declined by 3% to 9% per year and catch rates for four midtrophic species, mahimahi (Coryphaena hippurus), sickle pomfret (Taractichthys steindachneri), escolar (Lepidocybium flavobrunneum), and snake mackerel (Gempylus serpens), increased by 6% to 18% per year. The mean trophic level of the catch for these 13 species declined 5%, from 3.85 to 3.66. A shift in the ecosystem to an increase in midtrophic-level, fast-growing and short-lived species is indicated by the decline in apex predators in the catch (from 70% to 40%) and the increase in species with production to biomass values of 1.0 or larger in the catch (from 20% to 40%). This altered ecosystem may exhibit more temporal variation in response to climate variability.
Resumo:
Fishing is widely recognized to have profound effects on estuarine and marine ecosystems (Hammer and Jansson, 1993; Dayton et al., 1995). Intense commercial and recreational harvest of valuable species can result in population collapses of target and nontarget species (Botsford et al., 1997; Pauly et al., 1998; Collie et al. 2000; Jackson et al., 2001). Fishing gear, such as trawls and dredges, that are dragged over the seafloor inflict damage to the benthic habitat (Dayton et al., 1995; Engel and Kvitek, 1995; Jennings and Kaiser, 1998; Watling and Norse, 1998). As the growing human population, over-capitalization, and increasing government subsidies of fishing place increasing pressures on marine resources (Myers, 1997), a clear understanding of the mechanisms by which fishing affects coastal systems is required to craft sustainable fisheries management.
Resumo:
This is the report from the Regional Fisheries Advisory Committee meeting, which was held on the 14th September, 1987. The report contains information on Haweswater hatchery, River Eden draft netting, Fishery Byelaws, Haaf Net Limitation Order for the Solway Firth, Sea Fisheries Byelaws, River Caldew Weirs, serious fish mortalities, and the abolition of the coarse fish close season in enclosed waters. The section on River Caldew Weirs looks at the construction of fish passes at three weirs on the River Caldew to let migratory fish species reach the upper parts of the river. The section on serious fish mortalities covers information on the River Weaver, three pools system in Southport, Macclesfield Canal in Congleton, and River Eden, Appleby. The Fisheries Advisory Committee was part of the Regional Water Authorities, in this case the North West Water Authority. This preceded the Environment Agency which came into existence in 1996.
Resumo:
This is the report from the Regional Fisheries Advisory Committee meeting, which was held on the 17th October, 1988. The report contains sections on fisheries byelaws, sea fisheries byelaws, and serious fish mortalities. This section looks at some of the incidents which resulted in the loss of fish such as the River Tame, Stalybridge; Three Pools Waterway, Southport; River Weaver, Winsford to Vale Royal; River Weaver, Nantwich; Colton Beck, Greenodd; River Ribble, Calder Foot to Preston; Trawden Beck and Colne Water. The Fisheries Advisory Committee was part of the Regional Water Authorities, in this case the North West Water Authority. This preceded the Environment Agency which came into existence in 1996.
Resumo:
This is the River Goyt & Etherow Crayfish Survey report from the Environment Agency held between August and November 2000. The report focuses on the need to verify the presence of the non-native American signal crayfish (Pacifastacus leniusculus) in the main River Goyt, and determine its distribution. Signal crayfish have been reported in the River Goyt after spreading from a known population centre in Hollywood End Brook, to the east of Marple Bridge. The report contains sections on results, discussion and a summary. The section on results shows maps of presence or absence of different crayfish species in River Goyt, and the Mersey/ Weaver river systems such American signal crayfish (Pacifastacus leniusculus) and European freshwater crayfish (Austopotamobius pallipes).
Resumo:
The Moosa Creek extends from its opening into the Persian Gulf, with some sub narrow creeks leading to it. Zangi creek is one of the main branches of Moosa creek. The creek contains numerous sources of organic pollution, including sewage outlet flows and boat waste. After establishing the Petrochemical special Economic Zone (PETZONE) in 1997 near to the Zangi Creek, the pipelines, streets and railway made it distinct from eastern and western parts of this creek. Industrial activities have released sludge and effluents in this creek along these years. A survey of the Zangi creek was performed, assessing water properties, organic pollution, and the population density, distribution and diversity of macrobenthic fauna through bi-monthly sampling from July 2006 to September 2007. Samples were collected from water near the bottom and sediment at 7 stations include 2 stations inside the distinct Zangi creek and 4 stations along a transect with 1 km distances between them in eastern free part and one reference station located at the Persian Gulf entrance to the Moosa creek. The environmental parameters such as temperature, salinity, pH, dissolved oxygen, COD, turbidity, EC and heavy metals include Hg, Cd, Pb, Ni as well as percentage silt-clay and total organic matter of the sediment were measured. The faunal population density and their distribution are discussed in relation to the environmental changes. Results showed spatial heterogeneity in faunal distribution of the Zangi creek. Nine groups of macrofauna were identified out of distinct zangi creek. Polychaets formed the dominant group (48%) followed by bivalves (13%), gastropods (10%), Decapods (2%), Tanaids (5%), and all other groups (22%). The distinct creek was heavily polluted without any macrofauna communities probably as a consequence of the high pH, COD, low salinity and heavy metals contamination specially Cd and Pb. The other stations near to the disposal site were found with macrofauna communities commonly tolerant to organic pollution, At 3 km east of the disposal site, macrofauna is comparable to the surrounded creek, whereas macrofauna still indicate environmental degradation. Farther a way, faunal density decreases and equilibrium taxa gradually replace opportunistic species, while the other stations were far from polluted area contained lower pollution and relatively healthy macrofauna. The mean biomass of macrobenthic fauna were estimated for the whole studied area. The results are considered in Minimum density and biomass in surrounded creek and maximum density and biomass in 3 km of surrounded area. Biodiversity Indices were low in surrounded creek. The Shanon-weaver information index was used to describe the spatially variations in diversity. Macrofauna density, shanon and simpson index were significantly variable between surrounded and free parts of Zangi creek (p<0.05). The numerical abundance of macrobenthose varied from 221. m-2 in polluted area to 4346 m-2 in free part of Zangi creek. The Shanon-weaver information index varied from 0.4 in distinct area to 2.9 in reference station. The physico- chemical changes between distinct and free creeks showed significant variations such as pH, salinity and EC. Salinity and EC were significantly positive correlate to macrofauna density, whereas pH and TOM percentage indicated significantly negative correlation to density. Heavy metals concentrations in sediments were higher than water samples. Concentration pattern of heavy metals in sediments and water samples were Ni>Pb>Cd>Hg. Salinity and pH were significantly correlated to metals in sediments (p<0.01). No significant correlation were found between Macrofauna density and heavy metals (p<0.05).
Resumo:
The population density, distribution, diversity and secondry production of macrobenthic fauna of the inner Chahbahar Bay were studied through bi-monthly sampling from April 1995 to March 1996. Samples were collected from water near the bottom and sediment at 14 stations inside the Bay and one reference station located outside at the entrance to the Bay. The environmental parameters Such as temperature, water depth, salinity, pH and dissolved oxygen as well as percentage silt-clay and total organic matter of the sediment were measured. The faunal population density and their distribution is discussed in relation to the environmental changes. results obtained indicated both spatial and temporal heterogeneity in faunal distribution of the Chahbahar Bay. The total of 18 groups of macrofauna were identified in all samples. Amphipods formed the dominant group (21%) followed by polychaetes (19%), gastropods (15.7%) bivalves (10.6%) and all other groups (33.7%). Seasonal changes in faunal density is shown in relation to Indian Ocean southwest monsoon,the result of which indicated lower population density during monsoon (June to September) than that of the premonsoon (February to May) and post monsoon (October to January) periods. The numerical abundance of macrobenthos varied from 10260.m2 before monsoon to 5190 m2 during monsoon season. Three dominant groups of macrofauna including polychaetes, gastropods, and bivalves were identified in all collected samples. Indices of diversity, richness and evenness were calculated for these three dominant groups. The Shannon-Weaver information index was used to describe the spatially and temporally variation in diversity of these three major faunal groups. The results exhibited lower faunal diversity during monsoon period. The annual production of two dominant macrofauna species including a species of bivalve, Nuculana acuta and a species of Cephalochordata, Branchiostoma lanceolatum were measured by using age group determination. Furthermore the mean biomass and total annual production of macrobenthic fauna were estimated for the whole studied area. The potential yield of demersal fishery resources (fish and crustacean) then estimated and worked out to be 15360 tons/year asuming 10% ecological efficiency of hypothetical pyramid from 3rd to 4th marine trophic level. Accordingly the annual exploitable demersal fishery resources for the entire Chahbahar Bay was estimated to be 7600 to 8500 tons/year by taking 50 to 55% of the total estimated potential in to account.
Resumo:
The Victoria and Kyoga lake basins had a high fish species diversity with many fish species that were found only in these lakes. Two Tilapiines species Oreochromis esculentus and Oreochromis variabilis were the most important commercial species in these lakes and were found nowhere else on earth except in the Victoria and Kyoga lake basins (Graham 1929, Worthington 1929). Lakes Kyoga and Nabugabo also had endemic haplochromine species (Worthington 1929, Trewavas 1933, Greenwood 1965, 1966). As stocks of introduced species increased, stocks of most of the native species declined rapidly or disappeared altogether. The study was carried out on Lakes Victoria and Kyoga, River Nile, some selected satellite lakes from the two basins namely Lakes Mburo, Kachera, Wamala, Kayanja, Kayugi, Nabugabo, Victoria, Victoria nile and River Sio(Victoria lake basin). Lakes Kyoga (Iyingo), Nawampasa, Nakuwa, Gigati, Nyaguo, Agu, Kawi and Lemwa (Kyoga lake basin). Species composillon and relative abundance of fishes were estimated by detennining the overall average total number of each species encountered. A trophic consists of species using the same food category. Shannon-Weaver Index of diversity H (Pielou, 1969) and number of trophic groups, were used to estimate the Trophic diversity of various fish species in the lakes. Food analysis has been done on some fishes in some of the sampled lakes and is still going on, on remaining fishes and in some lakes. Generally fish ingested detritus, Spirulina, Melosira, filamentous algae, Planktolyngbya, Microcysists, Anabaena, Merismopedia, Spirogyra, higher plant material, rotifers, Ostracodes, Chironomid larvae and pupae, Choaborus larvae, Odonata, Povilla, Insect remains, Caridina, fish eggs and fish. Eight trophic groups were identified from thes food items ingestes. These included detritivores, algae eaters, higher plant eaters, zooplanktivores, insectivores, molluscivores, prawn eaters, paedophages and piscivores. Trophic diversity by number of trophic groups was highest in Lake Kyoga (6) followed by lakes Kayugi, Nabugabo, River Nile and Mburo (3) and the lowest number was recorded in kachera (2).
Resumo:
Lakes Victoria and Kyoga had, a diverse fish fauna, which was important as food for local population and valuable in scientific studies. Over the past twenty years, the diversity of fish in these lakes had declined due to over-exploitation, introduction of new fish species including the piscivorous Nile perch and degradation of fish habitat. Studies of satellite lakes in the Victoria and Kyoga lake basins suggested that some of these lakes harboured species which had been lost from the main lakes. In order to better understand the extent, to which these satellite lakes may serve as refugia, a faunal survey was undertaken to determine the distribution and nature of the taxa found. Seven satellite lakes and the eastern end of the main Lake Kyoga adjacent to these minor lakes were surveyed over a two-year period for fish species diversity. A total of 68 fish species were recorded of which 41 were haplochromines. Almost all the native non cichlids which occurred in the main lakes (Victoria and Kyoga) before the Nile perch upsurge recorded. Lakes Nawampasa, Gigati, Kawi, Agu and Nyaguo had the highest fish species and trophic diversity. The trophic diversity of haplochromines (based on Shannon Weaver Index) was highest in Lake Nawampasa (1.28), followed by Gigati (1.25), Kawi (1.18), Agu (0.8), Lemwa (0.81), Nyaguo (0.35) and was lowest in the main Lake Kyoga. Potential threats to these lakes were from collectors of ornamental fish species, especially the haplochromines, the spread of the predatory Nile perch and the water hyacinth, which are already in Lake Kyoga, and the destruction of macrophytes through harvesting of papyrus and reclamation for agriculture. The human population around these lakes harvested the fishes for food but the levels of exploitation were still low because the lakes were adjacent to main Lake Kyoga, the major supply of fish. Ornamental fish dealers were encouraged to start captive breeding of the fish for export to reduce pressure on the lakes and demonstrations for breeding were set up at FIRI in Jinja. Meetings and seminars were held with some of the communities living around the lakes sampled and the importance of fish species found in these lakes and the dangers of destructive practices discussed. Representatives of all taxa of fish caught from the lakes were preserved, catalogued and stored in the FIRI Museum. Results from this survey support the motion that these satellite lakes are important refugia for endemic diversity. Based on survey, we recommend that SaIne of these lakes like Nawampasa, Gigati, Kawi, Agu and Nyaguo could be designated as conservation areas of species threatened in the main lakes. One of the factors that seem to have prevented the spread of Nile perch into Kyoga Minor lakes seems to have been the presence of extensive swamps around these lakes and the low oxygen levels that exist in these habitats. Clearing of swamps and vegetation that separate Kyoga minor lakes from the main lake should be avoided to prevent Nile perch from spreading into these lakes.