37 resultados para The United States of America
Resumo:
Extensive losses of coastal wetlands in the United States caused by sea-level rise, land subsidence, erosion, and coastal development have increased hterest in the creation of salt marshes within estuaries. Smooth cordgrass Spartina altemiflora is the species utilized most for salt marsh creation and restoration throughout the Atlantic and Gulf coasts of the U.S., while S. foliosa and Salicomia virginica are often used in California. Salt marshes have many valuable functions such as protecting shorelines from erosion, stabilizing deposits of dredged material, dampening flood effects, trapping water-born sediments, serving as nutrient reservoirs, acting as tertiary water treatment systems to rid coastal waters of contaminants, serving as nurseries for many juvenile fish and shellfish species, and serving as habitat for various wildlife species (Kusler and Kentula 1989). The establishment of vegetation in itself is generally sufficient to provide the functions of erosion control, substrate stabilization, and sediment trapping. The development of other salt marsh functions, however, is more difficult to assess. For example, natural estuarine salt marshes support a wide variety of fish and shellfish, and the abundance of coastal marshes has been correlated with fisheries landings (Turner 1977, Boesch and Turner 1984). Marshes function for aquatic species by providing breeding areas, refuges from predation, and rich feeding grounds (Zimmerman and Minello 1984, Boesch and Turner 1984, Kneib 1984, 1987, Minello and Zimmerman 1991). However, the relative value of created marshes versus that of natural marshes for estuarine animals has been questioned (Carnmen 1976, Race and Christie 1982, Broome 1989, Pacific Estuarine Research Laboratory 1990, LaSalle et al. 1991, Minello and Zimmerman 1992, Zedler 1993). Restoration of all salt marsh functions is necessary to prevent habitat creation and restoration activities from having a negative impact on coastal ecosystems.
Resumo:
The ecological integrity of coral reef ecosystems in the U.S. Caribbean is widely considered to have deteriorated in the last three decades due to a range of threats and stressors from both human and non-human processes Rothenberger 2008, Wilkinson 2008). In response to the threats to Caribbean coral reef ecosystems and other regions around the world, the United States Government authorized the Coral Reef Conservation Act of 2000 to: (1) preserve, sustain, and restore the condition of coral reef ecosystems; (2) promote the wise management and sustainable use of coral reef ecosystems to benefit local communities and the Nation; and (3) develop sound scientific information on the condition of coral reef ecosystems and the threats to such ecosystems. The Act also resulted in the formation of a National Coral Reef Action Strategy and a Coral Reef Conservation Program. The Action Strategy (Goal 2 of Action Theme 1) outlined the importance of monitoring and assessing coral reef health as a mechanism toward reducing many threats to these ecosystems. Monitoring was considered of high importance in addressing impacts from climate change; disease; overfishing; destructive fishing practices; habitat destruction; invasive species; coastal development; coastal pollution; sedimentation/runoff and overuse from tourism. The strategy states that successful coral reef ecosystem conservation requires adaptive management that responds quickly to changing environmental conditions. This, in turn, depends on monitoring programs that track trends in coral reef ecosystem health and reveal patterns in their condition before irreparable harm occurs. As such, monitoring plays a vital role in guiding and supporting the establishment of complex or potentially controversial management strategies such as no-take ecological reserves, fishing gear restrictions, or habitat restoration, by documenting the impacts of gaps in existing management schemes and illustrating the effectiveness of new measures over time. Long-term monitoring is also required to determine the effectiveness of various management strategies to conserve and enhance coral reef ecosystems.
Resumo:
In the past decade, increased awareness regarding the declining condition of U.S. coral reefs has prompted various actions by governmental and non-governmental organizations. Presidential Executive Order 13089 created the U.S. Coral Reef Task Force (USCRTF) in 1998 to coordinate federal and state/territorial activities (Clinton, 1998), and the Coral Reef Conservation Act of 2000 provided Congressional funding for activities to conserve these important ecosystems, including mapping, monitoring and assessment projects carried out through the support of NOAA’s CRCP. Numerous collaborations forged among federal agencies and state, local, non-governmental, academic and private partners now support a variety of monitoring activities. This report shares the results of many of these monitoring activities, relying heavily on quantitative, spatially-explicit data that has been collected in the recent past and comparisons with historical data where possible. The success of this effort can be attributed to the dedication of over 270 report contributors who comprised the expert writing teams in the jurisdictions and contributed to the National Level Activities and National Summary chapters. The scope and content of this report are the result of their dedication to this considerable collaborative effort. Ultimately, the goal of this report is to answer the difficult but vital question: what is the condition of U.S. coral reef ecosystems? The report attempts to base a response on the best available science emerging from coral reef ecosystem monitoring programs in 15 jurisdictions across the country. However, few monitoring programs have been in place for longer than a decade, and many have been initiated only within the past two to five years. A few jurisdictions are just beginning to implement monitoring programs and face challenges stemming from a lack of basic habitat maps and other ecosystem data in addition to adequate training, capacity building, and technical support. There is also a general paucity of historical data describing the condition of ecosystem resources before major human impacts occurred, which limits any attempt to present the current conditions within an historical context and contributes to the phenomenon of shifting baselines (Jackson, 1997; Jackson et al., 2001; Pandolfi et al., 2005).
Resumo:
For more than 25 years all sea turtle products have been prohibited from international commerce by the 170-member nations of the Convention on International Trade in Endangered Species (CITES). Sea turtles continue to be threatened by direct take (including poaching) and illegal trade despite multi-national protection efforts. Although take may contribute significantly to sea turtle decline, illegal take is difficult to measure since there are few quantified records associated with legal fisheries and fewer still for illegal take (poaching). We can, however, quantify one portion of the illegal sea turtle trade by determining how many illegal products were seized at United States ports of entry over a recent 10-year period. The United States Fish and Wildlife Service (USFWS) oversees the import and export of wildlife and wildlife products, ensuring that wildlife trade complies with United States laws and international treaties. Additionally, the USFWS has legal authority to target suspected illegal wildlife activity through undercover and field investigations. In an effort to assess the scale of illegal sea turtle take and trade, we have conducted a 10-year (1994 – 2003) review of the law enforcement database maintained by the USFWS. This database tracks the number and type of wildlife cases, the quantity of seized products, and the penalties assessed against violators. These data are minimum estimates of the sea turtle products passing through the United States borders, as smuggled wildlife is oftentimes not detected.
Resumo:
Age, size, abundance, and birthdate distributions were compared for larval Atlantic menhaden (Brevoortia tyrannus) collected weekly during their estuarine recruitment seasons in 1989–90, 1990–91, and 1992–93 in lower estuaries near Beaufort, North Carolina, and Tuckerton, New Jersey, to determine the source of these larvae. Larval recruitment in New Jersey extended for 9 months beginning in October but was discontinuous and was punctuated by periods of no catch that were associated with low water temperatures. In North Carolina, recruitment was continuous for 5–6 months beginning in November. Total yearly larval density in North Carolina was higher (15–39×) than in New Jersey for each of the 3 years. Larvae collected in North Carolina generally grew faster than larvae collected in New Jersey and were, on average, older and larger. Birthdate distributions (back-calculated from sagittal otolith ages) overlapped between sites and included many larvae that were spawned in winter. Early spawned (through October) larvae caught in the New Jersey estuary were probably spawned off New Jersey. Larvae spawned later (November–April) and collected in the same estuary were probably from south of Cape Hatteras because only there are winter water temperatures warm enough (≥16°C) to allow spawning and larval development. The percentage contribution of these late-spawned larvae from south of Cape Hatteras were an important, but variable fraction (10% in 1992–93 to 87% in 1989–90) of the total number of larvae recruited to this New Jersey estuary. Thus, this study provides evidence that some B. tyrannus spawned south of Cape Hatteras may reach New Jersey estuarine nurseries.
Resumo:
General Circulation Models (GCMs) may be useful in estimating the ecological impacts of global climatic change. We analyzed seasonal weather patterns over the conterminous United States and determined that regional patterns of rainfall seasonality appear to control the distributions of the Nation's major biomes. These regional patterns were compared to the output from three GCMs for validation. The models appear to simulate the appropriate seasonal climates in the northern tier of states. However, the spatial extent of these regions is distorted. None of the models accurately portrayed rainfall seasonalities in the southern tier of states, where biomes are primarily influenced by the Bermuda High.
Resumo:
We describe a 2.5-degree gridpoint atmospheric hydrology/climatology of precipitable water, precipitation, atmospheric moisture convergence, and a residual evaporation or evapotranspiration for the coterminous United States. We also describe a large-scale surface hydrology/climatology of a residual soil moisture, streamflow divergence, or runoff, as well as precipitation and evaporation. Annual and seasonal means and interrelationships among various components of the hydrologic cycles are discussed.