35 resultados para Summer employment
Resumo:
The water circulation of the Egyptian Mediterranean waters was computed during winter and summer seasons using the dynamic method. The reference level was set at the 1000db surface. The results showed that the surface circulation is dominated by the Atlantic water inflow along the North African coast and by two major gyres, the Mersa Matruth anticyclonic gyre and El-Arish cyclonic gyre. The results showed a seasonal reversal of El-Arish gyre, being cyclonic in winter and anticyclonic in summer. El-Arish gyre had not been previously measured. The geostrophic current velocity at the edges of the Mersa Matruth gyre varied between 12.5 and 29.1cm/sec in winter and between 6.5 and 13.1cm/sec in summer. The current velocity reached its maximum values (>40cm/sec) at El-Arish gyre. The current velocity at the two gyres decreased with increasing depth. The North African Current affects the surface waters down to a depth of 100m, and that its mean velocity varies between 6 and 38cm/sec.
Resumo:
In this study heat budget components and momentum flux for August and January 1992 over the north Arabian Sea are computed. The marine meteorological data measured on board during the cruises of PAK-US joint project (NASEER) are used for the computation. Significant differences were found in the heat budget components as well as in the momentum flux during different monsoon periods over the north Arabian Sea. The latent heat flux was always positive and attributed to the large vapour pressure gradient. The computed moisture and latent heat fluxes in January were higher than August The highest value of latent heat flux 309 W/m2 at station 8 was evaluated. These higher latent heat fluxes were due to the large vapour pressure gradient, air-sea temperature difference, the wind speed, and the prevailing wind direction (from north and northeast). Negative values of sensible heat fluxes in both seasons indicate that the heat transfer was from the atmosphere to the ocean. The negative values of net heat gain indicate that the sea surface field became an energy sink: or the sea surface supplied more energy to the atmosphere than it received from it. Large variation in the momentum flux mainly attributed to the variation in the wind speed. Aerial averages of heat and momentum fluxes were also computed.
Resumo:
The utility of Summer Institute Efficiency Index (SIEI) is demonstrated using data from evaluation of a summer institute in fish processing. The SIEI worked to 76.16 showing high efficiency rating. The acquisition of skills appears to be independent of coverage and utility perception. The three dimensions of evaluation correlate highly with SIEI.
Resumo:
Data from an earlier study are reanalyzed to improve upon the evaluation measures of summer institutes. The Summer Institute Efficiency Index is improved by using weighted geometric mean using different ranks as weights for the several dimensions. The coverage utility index is improved by taking the ratings given by all the participants.
Resumo:
The present paper deals with the influence of El Nino event on the summer monsoon rainfall over Pakistan. The correlation between monthly rainfall of summer monsoon season and bi-Monthly Multivariate ENSO Index (MEI) has been calculated to see the influence of El Nino on the summer monsoon rainfall. MEI is bimonthly ENSO Index pertaining to the period from first week of previous month to first week of the month under consideration. While study the correlation's with the ENSO events out side the Pacific Ocean MEI is more appropriate than other indices like Southern Oscillation Index (SOI) as MEI integrates complete information on ENSO viz. six oceanic and meteorological variables over the tropical Pacific. The results of the study show that there is a tendency of reduction in summer monsoon rainfall over Pakistan during El Nino years. The deficiency in % rainfall is statistically significant up to 90% level during July and September months. It is interesting to note that Pakistan receives more than normal rainfall during summer monsoon season in the immediate following year after the El Nino event. The correlation analysis is also performed on the summer monsoon months for individual provinces of Pakistan. All provinces receive deficient rainfall during monsoon months. The deficiency in rainfall over Punjab during all monsoon months is significant, whereas the deficiency in rainfall is significant during July and August over NWFP and Sindh respectively. No significant impact of El Nino on the summer monsoon rainfall over Baluchistan is observed.