104 resultados para Shell Oil Company
Resumo:
In western civilization, the knowledge of the elasmobranch or selachian fishes (sharks and rays) begins with Aristotle (384–322 B.C.). Two of his extant works, the “Historia Animalium” and the “Generation of Animals,” both written about 330 B.C., demonstrate knowledge of elasmobranch fishes acquired by observation. Roman writers of works on natural history, such as Aelian and Pliny, who followed Aristotle, were compilers of available information. Their contribution was that they prevented the Greek knowledge from being lost, but they added few original observations. The fall of Rome, around 476 A.D., brought a period of economic regression and political chaos. These in turn brought intellectual thought to a standstill for nearly one thousand years, the period known as the Dark Ages. It would not be until the middle of the sixteenth century, well into the Renaissance, that knowledge of elasmobranchs would advance again. The works of Belon, Salviani, Rondelet, and Steno mark the beginnings of ichthyology, including the study of sharks and rays. The knowledge of sharks and rays increased slowly during and after the Renaissance, and the introduction of the Linnaean System of Nomenclature in 1735 marks the beginning of modern ichthyology. However, the first major work on sharks would not appear until the early nineteenth century. Knowledge acquired about sea animals usually follows their economic importance and exploitation, and this was also true with sharks. The first to learn about sharks in North America were the native fishermen who learned how, when, and where to catch them for food or for their oils. The early naturalists in America studied the land animals and plants; they had little interest in sharks. When faunistic works on fishes started to appear, naturalists just enumerated the species of sharks that they could discern. Throughout the U.S. colonial period, sharks were seldom utilized for food, although their liver oil or skins were often utilized. Throughout the nineteenth century, the Spiny Dogfish, Squalus acanthias, was the only shark species utilized in a large scale on both coasts. It was fished for its liver oil, which was used as a lubricant, and for lighting and tanning, and for its skin which was used as an abrasive. During the early part of the twentieth century, the Ocean Leather Company was started to process sea animals (primarily sharks) into leather, oil, fertilizer, fins, etc. The Ocean Leather Company enjoyed a monopoly on the shark leather industry for several decades. In 1937, the liver of the Soupfin Shark, Galeorhinus galeus, was found to be a rich source of vitamin A, and because the outbreak of World War II in 1938 interrupted the shipping of vitamin A from European sources, an intensive shark fishery soon developed along the U.S. West Coast. By 1939 the American shark leather fishery had transformed into the shark liver oil fishery of the early 1940’s, encompassing both coasts. By the late 1940’s, these fisheries were depleted because of overfishing and fishing in the nursery areas. Synthetic vitamin A appeared on the market in 1950, causing the fishery to be discontinued. During World War II, shark attacks on the survivors of sunken ships and downed aviators engendered the search for a shark repellent. This led to research aimed at understanding shark behavior and the sensory biology of sharks. From the late 1950’s to the 1980’s, funding from the Office of Naval Research was responsible for most of what was learned about the sensory biology of sharks.
Resumo:
A study was initiated in May 2011, under the direction of the Deepwater Horizon (DWH) Natural Resource Damage Assessment (NRDA) Deepwater Benthic Communities Technical Working Group (NRDA Deep Benthic TWG), to assess potential impacts of the DWH oil spill on sediments and resident benthic fauna in deepwater (> 200 meters) areas of the Gulf. Key objectives of the study were to complete the analysis of samples from 65 priority stations sampled in September-October 2010 on two DWH Response cruises (Gyre and Ocean Veritas) and from 38 long-term monitoring sites (including a subset of 35 of the original 65) sampled on a follow-up NRDA cruise in May-June 2011. The present progress report provides a brief summary of results from the initial processing of samples from fall 2010 priority sites (plus three additional historical sites). Data on key macrofaunal, meiofaunal, and abiotic environmental variables are presented for each of these samples and additional maps are included to depict spatial patterns in these variables throughout the study region. The near-field zone within about 3 km of the wellhead, where many of the stations showed evidence of impaired benthic condition (e.g. low taxa richness, high nematode/harpacticoid-copepod ratios), also is an area that contained some of the highest concentrations of total petroleum hydrocarbons (TPH), total polycyclic aromatic hydrocarbons (total PAHs), and barium in sediments (as possible indicators of DWH discharges). There were similar co-occurrences at other sites outside this zone, especially to the southwest of the wellhead out to about 15 km. However, there also were exceptions to this pattern, for example at several farther-field sites in deeper-slope and canyon locations where there was low benthic species richness but no evidence of exposure to DWH discharges. Such cases are consistent with historical patterns of benthic distributions in relation to natural controlling factors such as depth, position within canyons, and availability of organic matter derived from surface-water primary production.
Resumo:
NOAA’s National Status and Trends Program (NS&T) collected oyster tissue and sediments for quantification of polycyclic aromatic hydrocarbons (PAHs) and petroleum associated metals before and after the landfall of oil from the Deepwater Horizon incident of 2010. These new pre- and post- landfall measurements were put into a historical context by comparing them to data collected in the region over three decades during Mussel Watch monitoring. Overall, the levels of PAHs in both sediment and oysters both pre- and post-landfall were within the range of historically observed values for the Gulf of Mexico. Some specific sites did have elevated PAH levels. While those locations generally correspond to areas in which oil reached coastal areas, it cannot be conclusively stated that the contamination is due to oiling from the Deepwater Horizon incident at these sites due to the survey nature of these sampling efforts. Instead, our data indicate locations along the coast where intensive investigation of hydrocarbon contamination should be undertaken. Post-spill concentrations of oil-related trace metals (V, Hg, Ni) were generally within historically observed ranges for a given site, however, nickel and vanadium were elevated at some sites including areas in Mississippi Sound and Galveston, Terrebonne, Mobile, Pensacola, and Apalachicola Bays. No oyster tissue metal body burden exceeded any of the United States Food and Drug Administration’s (FDA) shellfish permissible action levels for human consumption.
Resumo:
Recent research by the authors evaluated strategies to reduce fishmeal and fish oil in diets for red drum by substituting terrestrial proteins and lipids while maintaining beneficial fatty acids with DHA supplements derived from marine algae. Results suggested fatty acid-enriched finishing diets can be used with growout diets containing little or no fishmeal and fish oil to achieve the desired DHA content in the final fish fillets.
Resumo:
Shell composition of 35 species of molluscs was studied. The shell, calcium and calcium carbonate contents were lowest in the cuttle bone of cuttlefish, while they were highest in shell of Cypraea ocellata. Solen sp. had higher meat and protein content than the pelecypods and lower meat, water and protein content than the cephalopods. Inverse relationships between water and fat, and protein and ash were established.
Resumo:
Four feeds having different protein levels were separately tested on Tor khudree fry having an average length of 23.5 mm and weight 55 mg. The best average growth of 15.66 mg and 0.456 mm/day was obtained with Feed IV which comprised rice bran, ground nut oil cake, Acetes, wheat flour and mineral mix at the ratio of 1:1:1:0.7143:0.01428. These constitute 35.29% of proteins. The Feed II which comprised R.B + G.O.C. + prawn shell + wheat flour and mineral mix at a ratio of 1:1:1:0.7143:0.01428 contained 32.61% crude proteins. It provided a growth rate of 14.83 mg and 0.440 mm per day. The conversion rates were 38.258 and 37.776 for feeds IV and II respectively. Since Feed II is cheaper than Feed IV and provides almost equal growth rate, it can be used in the nurseries for intensive rearing of T. khudree fry.
Resumo:
The course of development of a few free amino acids under the influence of aureomycin in oil sardine (Sardinella lingiceps) held in ice storage was investigated. The levels of leucines and valine regularly increased in the control and aureomycin treated fush throughout the storage period. Alanines and threonine showed similar trend in both control and fish treated with 20ppm aureomycin. These amino acids however showed a gradual fall in fish treated at 5 ppm level. The changes in tyrosine+tryptophane were found to be irregular. Most of the amino acids studied indicated a remarkable change in trend by about the 16th day of ice storage in the case of fish treated with 50ppm aureimycin.
Resumo:
Gas-liquid chromatography has been employed for the qualitative and quantitative analysis of the component fatty acids in lipids of oil sardine (Sardinella longiceps). Phospholipids and triglycerides of the lipids were previously separated by column chromatography before they were converted into the methyl esters of the fatty acids. The predominant acids present in the depot fat of the fish have been found to be C14:0=8.13%, C16:0=27.9%, C18:0=3.8%, C18:1=15.4%., C20:5=10.6% and C22:6=8.8%. Apart from the above acids the distribution of minor acids belonging to Cl8, C20 and C22 groups have also been worked out. The separated phospholipid fraction contained more than 70% polyunsaturated acids of which the important constituents were docosahexaenoic (C22:6=28%) and eicosapentaenoic (C20:5=10.6%). A marked reduction was found in the amounts of polyunsaturated acids in triglycerides, their total amount registering about 20%. This fraction recorded about 48% of C16 acids of which palmitic and palmitoleic acids amounted to 25.8% and 19.1% respectively. Occurrence of odd numbered fatty acids C15 and C17 has also been noted in the phospholipid and composite samples of the fish.