76 resultados para Sewage purification nutrient removal
Resumo:
The magnitude of apparent specific dynamic action (SDA), the maximum rate of oxygen consumption and the length of time that the rate of oxygen uptake remained elevated above the prefeeding level were measured in the Pearl Spot, Etroplus suratensis, fed isonitrous test diets (D 1 - D 4 ) with varying nutrient sources. Irrespective of the diets, the metabolic rate increased immediately after feeding and reached the maximum within 3 to 4 hours. The source of nutrients in the diet significantly altered the magnitude of SDA. It was maximum (91.76% and 129.56%) for those fed on diets D 2 and D 3 and minimum 46.47% and 50.30% for those fed on diets D 1 and D 4 , respectively.
Resumo:
Mats (biomasses) of macroalgae, i.e. Ulva spp., Enteromorpha spp., Graciolaria spp., and Cladophora spp., have increased markedly over the past 50 years, and they cover much larger areas than they once did in many estuaries of the world. The increases are due to large inputs of pollutants, mainly nitrates. During the warm months, the mats lie loosely on shallow sand and mud flats mostly along shorelines. Ulva lactuca overwinters as buds attached to shells and stones, and in the spring it grows as thalli (leaf fronds). Mats eventually form that are several thalli thick. Few macroinvertebrates grow on the upper surfaces of their thalli due to toxins they produce, and few can survive beneath them. The fish, crabs, and wading birds that once used the flats to feed on the macroinvertebrates are denied these feeding grounds. The mats also grow over and kill mollusks and eelgrass, Zostera marina. An experiment was undertaken which showed that two removals of U. lactuca in a summer from a shallow flat in an estuarine cove maintained the bottom almost free of it.
Resumo:
A worker drilling in Colton Beck,, North West England, UK, trying to make it more accessible for fish passing in 1953. This photo is part of a Photo Album that includes pictures from 1935 to 1954.
Resumo:
In this report we analyze the Topic 5 report’s recommendations for reducing nitrogen losses to the Gulf of Mexico (Mitsch et al. 1999). We indicate the relative costs and cost-effectiveness of different control measures, and potential benefits within the Mississippi River Basin. For major nonpoint sources, such as agriculture, we examine both national and basin costs and benefits. Based on the Topic 2 economic analysis (Diaz and Solow 1999), the direct measurable dollar benefits to Gulf fisheries of reducing nitrogen loads from the Mississippi River Basin are very limited at best. Although restoring the ecological communities in the Gulf may be significant over the long term, we do not currently have information available to estimate the benefits of such measures to restore the Gulf’s long-term health. For these reasons, we assume that measures to reduce nitrogen losses to the Gulf will ultimately prove beneficial, and we concentrate on analyzing the cost-effectiveness of alternative reduction strategies. We recognize that important public decisions are seldom made on the basis of strict benefit–cost analysis, especially when complete benefits cannot be estimated. We look at different approaches and different levels of these approaches to identify those that are cost-effective and those that have limited undesirable secondary effects, such as reduced exports, which may result in lost market share. We concentrate on the measures highlighted in the Topic 5 report, and also are guided by the source identification information in the Topic 3 report (Goolsby et al. 1999). Nonpoint sources that are responsible for the bulk of the nitrogen receive most of our attention. We consider restrictions on nitrogen fertilizer levels, and restoration of wetlands and riparian buffers for denitrification. We also examine giving more emphasis to nitrogen control in regions contributing a greater share of the nitrogen load.
Resumo:
The overall goal of this assessment was to evaluate the effects of nutrient-source reductions that may be implemented in the Mississippi River Basin (MRB) to reduce the problem of low oxygen conditions (hypoxia) in the nearshore Gulf of Mexico. Such source reductions would affect the quality of surface waters—streams, rivers, and reservoirs—in the drainage basin itself, as well as nearshore Gulf waters. The task group’s work was divided into addressing the effects of nutrient-source reductions on: (1) surface waters in the MRB and (2) hypoxia in the Gulf of Mexico.
Resumo:
The continental shelf adjacent to the Mississippi River is a highly productive system, often referred to as the fertile fisheries crescent. This productivity is attributed to the effects of the river, especially nutrient delivery. In the later decades of the 2oth century, though, changes in the system were becoming evident. Nutrient loads were seen to be increasing and reports of hypoxia were becoming more frequent. During most recent summers, a broad area (up to 20,000 krn2) of near bottom, inner shelf waters immediately west of the Mississippi River delta becomes hypoxic (dissolved oxygen concentrations less than 2 mgll). In 1990, the Coastal Ocean Program of the National Oceanic and Atmospheric Administration initiated the Nutrient Enhanced Coastal Ocean Productivity (NECOP) study of this area to test the hypothesis that anthropogenic nutrient addition to the coastal ocean has contributed to coastal eutrophication with a significant impact on water quality. Three major goals of the study were to determine the degree to which coastal productivity in the region is enhanced by terrestrial nutrient input, to determine the impact of enhanced productivity on water quality, and to determine the fate of fixed carbon and its impact on living marine resources. The study involved 49 federal and academic scientists from 14 institutions and cost $9.7 million. Field work proceeded from 1990 through 1993 and analysis through 1996, although some analyses continue to this day. The Mississippi River system delivers, on average, 19,000 m3/s of water to the northern Gulf of Mexico. The major flood of the river system occurs in spring following snow melt in the upper drainage basin. This water reaches the Gulf of Mexico through the Mississippi River birdfoot delta and through the delta of the Atchafalaya River. Much of this water flows westward along the coast as a highly stratified coastal current, the Louisiana Coastal Current, isolated from the bottom by a strong halocline and from mid-shelf waters by a strong salinity front. This stratification maintains dissolved and particulate matter from the rivers, as well as recycled material, in a well-defined flow over the inner shelf. It also inhibits the downward mixing of oxygenated surface waters from the surface layer to the near bottom waters. This highly stratified flow is readily identifiable by its surface turbidity, as it carries much of the fine material delivered with the river discharge and resuspended by nearshore wave activity. A second significant contribution to the turbidity of the surface waters is due to phytoplankton in these waters. This turbidity reduces the solar radiation penetrating to depth through the water column. These two aspects of the coastal current, isolation of the inner shelf surface waters and maintenance of a turbid surface layer, precondition the waters for the development of near bottom summer hypoxia.
Resumo:
Since the 1940s, portions of the Island of Vieques, Puerto Rico have been used by the United States Navy (USN) as an ammunition support detachment and bombing and maneuver training range. In April 2001, the USN began phasing out military activities on the island and transferring military property to the U.S. Department of the Interior, the Municipality of Vieques, and the Puerto Rico Conservation Trust. A small number of studies have been commissioned by the USN in the past few decades to assess selected components of the coral reef ecosystem surrounding the island; however, these studies were generally of limited geographic scope and short duration. The National Oceanic and Atmospheric Administration’s (NOAA) National Centers for Coastal Ocean Science (NCCOS), in consultation with NOAA’s Office of Response and Restoration (OR&R) and other local and regional experts, conducted a more comprehensive characterization of coral reef ecosystems, contaminants, and nutrient distribution patterns around Vieques. This work was conducted using many of the same protocols as ongoing monitoring work underway elsewhere in the U.S. Caribbean and has enabled comparisons among coral reef ecosystems in Vieques and other locations in the region. This characterization of Vieques’ marine ecosystems consists of a two part series. First, available information on reefs, fish, birds, seagrasses, turtles, mangroves, climate, geology, currents, and human uses from previous studies was gathered and integrated into a single document comprising Part I of this two part series (Bauer et al. 2008). For Part II of the series, presented in this document, new field studies were conducted to fill data gaps identified in previous studies, to provide an island-wide characterization, and to establish baseline values for the distribution of habitats, nutrients, contaminants, fish, and benthic communities. An important objective underlying this suite of studies was to quantify any differences in the marine areas adjacent to the former and current land-use zoning around Vieques. Specifically of interest was the possibility that either Naval (e.g., practice bombing, munitions storage) or civilian activities (e.g., sewage pollutants, overfishing) could have a negative impact on adjacent marine resources. Measuring conditions at this time and so recently after the land transfer was essential because present conditions are likely to be reflective of past land-use practices. In addition, the assessment will establish benchmark conditions that can be influenced by the potentially dramatic future changes in land-use practices as Vieques considers its development. This report is organized into seven chapters that represent a suite of interrelated studies. Chapter 1 provides a short introduction to the island setting, the former and current land-use zoning, and how the land zoning was used to spatially stratify much of the sampling. Chapter 2 is focused on benthic mapping and provides the methods, accuracy assessment, and results of newly created benthic maps for Vieques. Chapter 3 presents the results of new surveys of fish, marine debris, and reef communities on hardbottom habitats around the island. Chapter 4 presents results of flora and fauna surveys in selected bays and lagoons. Chapter 5 examines the distribution of nutrients in lagoons, inshore, and offshore waters around the island. Chapter 6 is focused on the distribution of chemical contaminants in sediments and corals. Chapter 7 is a brief summary discussion that highlights key findings of the entire suite of studies.
Resumo:
The Hedgehog signaling pathway is essential for embryogenesis and for tissue homeostasis in the adult. However, it may induce malignancies in a number of tissues when constitutively activated, and it may also have a role in other forms of normal and maladaptive growth. Cyclopamine, a naturally occurring steroidal alkaloid, specifically inhibits the Hedgehog pathway by binding directly to Smoothened, an important Hedgehog response element. To use cyclopamine as a tool to explore and/or inhibit the Hedgehog pathway in vivo, a substantial quantity is required, and as a practical matter cyclopamine has been effectively unavailable for usage in animals larger than mice.
Resumo:
Fishes are widely known to aggregate around floating objects, including flotsam and fish aggregating devices (FADs).The numbers and diversity of juvenile fishes that associated with floating objects in the nearshore waters of the eastern tropical Pacific were recording by using FADs as an experimental tool. The effects of fish removal, FAD size, and the presence or absence of a fouling community at the FAD over a period of days, and the presence of prior recruits over a period of hours were evaluated by using a series of experiments. The removal of FAD-associated fish assemblages had a significant effect on the number of the dominant species (Abudefduf troschelii) in the following day’s assemblage compared to FADs where the previous day’s assemblage was undisturbed; there was no experimental effect on combined species totals. Fishes do, however, discriminate among floating objects, forming larger, more species-rich assemblages around large FADs compared to small ones. Fishes also formed larger assemblages around FADs possessing a fouling biota versus FADs without a fouling biota, although this effect was also closely tied to temporal factors. FADs enriched with fish accumulated additional recruits more quickly than FADs that were not enriched with fish and therefore the presence of prior recruits had a strong, positive effect on subsequent recruitment. These results suggest that fish recruitment to floating objects is deliberate rather than haphazard or accidental and they sup-port the hypothesis that flotsam plays a role in the interrelationship between environment and some juvenile fishes. These results are relevant to the use of FADs for fisheries, but emphasize that further research is necessary for applied interests.
Resumo:
Small indigenous fish species (SIS) are an important source of essential macro- and micronutrients that can play an important role in the elimination of malnutrition and micronutrient deficiencies in the populations of many South and Southeast Asian countries. Of the 260 freshwater fish species in Bangladesh, more than 140 are classified as SIS and are an integral part of the rural Bangladeshi diet. As many SIS are eaten whole, with organs and bones, they contain high amounts of vitamins and minerals, including calcium, and iron and zinc. Some SIS, such as mola, are also rich in vitamin A. SIS are often cooked with vegetables and a little oil, so they contribute to the food diversity of the rural poor.SIS are recognized as a major animal-source food group, contributing to improved food and nutrition security and livelihoods of the people of South and Southeast Asia. The purpose of this workshop is to bring together policy makers, extension agents, researchers, non-governmental and development organizations to share knowledge about small fish, their contribution to better nutrition, production technologies, and strategies for wider dissemination of pond culture and wetland based-production and conservation technologies. The workshop is expected to generate ideas for further research and development of sustainable technologies for production, management and conservation of SIS for the benefit of the people of Bangladesh as well as the South and Southeast Asian region.