32 resultados para Roma-Historia-Nerón, 54-68


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Studies on the quality assessments of three traditional, rotary and solar tunnel dried SIS products were conducted. Organoleptic quality of traditional dried SIS products available in the markets was poor compared to those produced in rotary and solar tunnel dryer. Reconstitution of samples were in the range of 54.26% to 75.24%, 69.37% to 83.73% and 55.08% to 80.24% when soaked at 80°C for traditional, rotary and solar tunnel dried products, respectively. The percentage of reconstitution increased with the increase of soaking time and the uptake of water was maximum after 60 min of soaking. The moisture contents of traditional, rotary and solar tunnel dried products were in the range of 26.02% to 27.33%, 16.23% to 22.84% and 13.71% to 19.30%, respectively. The protein contents were in the range of 60.78% to 72.59%, 62.17% to 76.27% and 61.11% to 76.00%, respectively; lipid contents were in the range of 12.26% to 22.60%, 14.00% to 24.71% and 13.92% to 22.39%, respectively and ash contents in the range of 15.11% to 16.59%, 8.32% to 13.51% and 8.71% to 16.45%, respectively on dry matter basis. The TVB-N content of rotary and solar tunnel dried products was low compared to traditional one ranging from 10.64 to 17.52 mg/100g and 14.34 to 15.68 mg/100g, respectively whereas the TVB-N content of traditional samples was in the range of 15.46 to 20.36 mg/100g. The bacterial load of traditional, rotary and solar tunnel dried products were in the range of 1.43x10 super(8) CFU/g to 2.89 x10 super(80 CFU/g, 1.91x10 super(8) CFU/g to 2.84x10 super(8) CFU/g and 1.95x10 super(8) CFU/g to 2.59x10 super(8) CFU/g, respectively. The results of the study indicated that dried fish products from rotary dryer and solar tunnel dryer were found to be of better quality in nutritional and food quality aspects than those of traditional dried products.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Black mouth croaker (Atrobucca nibe) is considered as a new valuable fish stock in the Oman Sea. In this study, surimi was manufactured from nonmarket size of the fish, manually and different cryoprotectant agents were added to the surimi. Finally changes in physiochemical, microbiological and sensory quality, characteristics of the surimi and kamaboko gel samples were assessed during 6 months at freezing storage (-18ºC). Surimi samples with the addition of Iranian tragacanth gum (TG), xanthan gum (XG), chitosan (CS) and whey protein concentrate (WPC) at 1% (w/w) were prepared to evaluate their impacts as a cryoprotectant on the surimi, individually. The results showed that the whiteness and lightness indexes in all surimi samples were gradually decreased during frozen storage. This trend of decreasing was more intensity in the control sample from 61.08±0.131 to 54.21±0.067 was recorded (p<0.05). Water holding capacity (WHC) in all treatments was decreased during 6 months. The lowest WHC (g/g) was obtained in the surimi without cryoprotectants and maximum WHC was measured in Tcs and Twpc samples, respectively (p<0.05). The lowest breaking force was calculated in Txg (166.00±22.627 g) and Tc (271.50±263.16 g) during 6 months at frozen storage, respectively (p<0.05), while Twpc treatment with slight variations showed the highest breaking force (p<0.05). Also, the lowest gel strength was obtained in Txg (68.22±6.740 g.cm) after 6 month of frozen storage (p<0.05). All Kamaboko surimi gels texture profile analysis parameters decreaced with increasing shelf life. This decreasing trend in the control sample was more severe. Floding results were reduced in all samples during storage (p<0.05). The best protective results probably were obtained in WPC, chitosan and commercial cryoprotectant agents, respectively due to protein stabilization of myofibrillar proteins and the protein-protein network structure, leading to the formation of surimi gel with strong textural properties during frozen conditions. The average number of surimi polygonal structures were significantly decreased (number per mm2) and their area were significantly increased (μm2) in all treatments (p<0.05). With increasing storage time, moisture, protein contents and pH were decreaced. Maximun TVB-N index was calculated in Tc (7.93±0.400 mg/100g) and Txg (7.88±0.477), respectively (p<0.05). TBRAs index was increased in all treatments during frozen storage, while this trend was reached in maximum value in Tc (p<0.05). Sensory evaluation of the fish finger quality characteristics (color, odor, texture and overall acceptability) preapare from frozen black mouth croaker surimi was decreaced during 6 month frozen storage. After the period of frozen storage the highest quality scores were measured in Twpc, Tcs and Tcc samples, respectively (p<0.05). In this study, coliform bacteria were not found in all treatments during frozen storage. The surimi sample containing chitosan showed lower mesophilic and psychrotropic bacteria (log cfu/g) than other treatments during frozen storage (p<0.05). Salt-soluble proteins extractions of all treatments were decreased during frozen storage. This decreacing trend was highest in Tcs (45.74±0.176%) and lowest in Tc treatments after 6 month of frozen storage (29.92±0.224%) (p<0.05). Although commercial cryoprotectant agents were successful in limiting the denaturation of proteins but sugar contents were not accepted for diabetics or those who disagree with the sweet taste and high calorie food. Hence, commercial cryoprotectant agents can be replaced with whey protein concentrate and chitosan at 1% level (w/w) consider that they were showed proper protection of the surimi myofibrillar proteins during storage.