42 resultados para Priorities
Resumo:
This Freely Associated States Shallow-water Coral Ecosystem Mapping Implementation Plan (FAS MIP) presents a framework for the development of shallow-water (~0–40 m; 0–22 fm) benthic habitat and possibly bathymetric maps of critical areas of the Freely Associated States (FAS). The FAS is made up of three self-governing groups of islands and atolls—the Republic of Palau (Palau), the Federated States of Micronesia (FSM), and the Republic of the Marshall Islands (RMI)—that are affiliated with the United States through Compacts of Free Association. This MIP was developed with extensive input from colleges, national and state regulatory and management agencies, federal agencies, non-governmental organizations, and individuals involved in or supporting the conservation and management of the FAS’s coral ecosystems. A list of organizations and individuals that provided input to the development of this MIP is provided in Appendix 1. This MIP has been developed to complement the Coral Reef Mapping Implementation Plan (2nd Draft) released in 1999 by the U.S. Coral Reef Task Force’s Mapping and Information Synthesis Working Group. That plan focused on mapping United States and FAS shallow-water (then defined as <30 m) coral reefs by 2009, based on available funding and geographic priorities, using primarily visual interpretation of aerial photography and satellite imagery. This MIP focuses on mapping the shallow-water (now defined as 0–40 m, rather than 0–30 m) coral ecosystems of the FAS using a suite of technologies and map development procedures. Both this FAS MIP and the 1999 Coral Reef Mapping Implementation Plan (2nd Draft) support to goals of the National Action Plan to Conserve Coral Reefs (U.S. Coral Reef Task Force, 2000). This FAS MIP presents a framework for mapping the coral ecosystems of the FAS and should be considered an evolving document. As priorities change, funding opportunities arise, new data are collected, and new technologies become available, the information presented herein will change.
Resumo:
This report is the product of a panel of experts in the science of blooms of unicellular marine algae which can cause mass mortalities in a variety of marine organisms and cause illness and even death in humans who consume contaminated seafood. These phenomena are collectively termed harmful algal blooms or HABs for short. As a counterpart to recent assessments of the priorities for scientific research to understand the causes and behavior of HABs, this assessment addressed the management options for reducing their incidence and extent (prevention), actions that can quell or contain blooms (control), and steps to reduce the losses of resources or economic values and minimize human health risks (mitigation). This assessment is limited to an appraisal of scientific understanding, but also reflects consideration of information and perspectives provided by regional experts, agency managers and user constituencies during three regional meetings. The panel convened these meetings during the latter half of 1996 to solicit information and opinions from scientific experts, agency managers and user constituencies in Texas, Washington, and Florida. The panel's assessment limited its attention to those HABs that result in neurotoxic shellfish poisoning, paralytic shellfish poisoning, brown tides, amnesic shellfish poisoning, and aquaculture fish kills. This covers most, but certainly not all, HAB problems in the U.S.
Resumo:
A significant fraction of the total nitrogen entering coastal and estuarine ecosystems along the eastern U.S. coast arises from atmospheric deposition; however, the exact role of atmospherically derived nitrogen in the decline of the health of coastal, estuarine, and inland waters is still uncertain. From the perspective of coastal ecosystem eutrophication, nitrogen compounds from the air, along with nitrogen from sewage, industrial effluent, and fertilizers, become a source of nutrients to the receiving ecosystem. Eutrophication, however, is only one of the detrimental impacts of the emission of nitrogen containing compounds to the atmosphere. Other adverse effects include the production of tropospheric ozone, acid deposition, and decreased visibility (photochemical smog). Assessments of the coastal eutrophication problem indicate that the atmospheric deposition loading is most important in the region extending from Albemarle/Parnlico Sounds to the Gulf of Maine; however, these assessments are based on model outputs supported by a meager amount of actual data. The data shortage is severe. The National Research Council specifically mentions the atmospheric role in its recent publication for the Committee on Environmental and Natural Resources, Priorities for Coastal Ecosystem Science (1994). It states that, "Problems associated with changes in the quantity and quality of inputs to coastal environments from runoff and atmospheric deposition are particularly important [to coastal ecosystem integrity]. These include nutrient loading from agriculture and fossil fuel combustion, habitat losses from eutrophication, widespread contamination by toxic materials, changes in riverborne sediment, and alteration of coastal hydrodynamics. "
Mapping reef fish and the seascape: using acoustics and spatial modeling to guide coastal management
Resumo:
Reef fish distributions are patchy in time and space with some coral reef habitats supporting higher densities (i.e., aggregations) of fish than others. Identifying and quantifying fish aggregations (particularly during spawning events) are often top priorities for coastal managers. However, the rapid mapping of these aggregations using conventional survey methods (e.g., non-technical SCUBA diving and remotely operated cameras) are limited by depth, visibility and time. Acoustic sensors (i.e., splitbeam and multibeam echosounders) are not constrained by these same limitations, and were used to concurrently map and quantify the location, density and size of reef fish along with seafloor structure in two, separate locations in the U.S. Virgin Islands. Reef fish aggregations were documented along the shelf edge, an ecologically important ecotone in the region. Fish were grouped into three classes according to body size, and relationships with the benthic seascape were modeled in one area using Boosted Regression Trees. These models were validated in a second area to test their predictive performance in locations where fish have not been mapped. Models predicting the density of large fish (≥29 cm) performed well (i.e., AUC = 0.77). Water depth and standard deviation of depth were the most influential predictors at two spatial scales (100 and 300 m). Models of small (≤11 cm) and medium (12–28 cm) fish performed poorly (i.e., AUC = 0.49 to 0.68) due to the high prevalence (45–79%) of smaller fish in both locations, and the unequal prevalence of smaller fish in the training and validation areas. Integrating acoustic sensors with spatial modeling offers a new and reliable approach to rapidly identify fish aggregations and to predict the density large fish in un-surveyed locations. This integrative approach will help coastal managers to prioritize sites, and focus their limited resources on areas that may be of higher conservation value.
Resumo:
NOAA’s Coral Reef Conservation program (CRCP) develops coral reef management priorities by bringing together various partners to better understand threats to coral reef ecosystems with the goal of conserving, protecting and restoring these resources. Place-based and ecosystem-based management approaches employed by CRCP require that spatially explicit information about benthic habitats and fish utilization are available to characterize coral reef ecosystems and set conservation priorities. To accomplish this, seafloor habitat mapping of coral reefs around the U.S. Virgin Islands (USVI) and Puerto Rico has been ongoing since 2004. In 2008, fishery acoustics surveys were added to NOAA survey missions in the USVI and Puerto Rico to assess fish distribution and abundance in relation to benthic habitats in high priority conservation areas. NOAA’s National Centers for Coastal Ocean Science (NCCOS) have developed fisheries acoustics survey capabilities onboard the NOAA ship Nancy Foster to complement the CRCP seafloor habitat mapping effort spearheaded by the Center for Coastal Monitoring and Assessment Biogeography Branch (CCMA-BB). The integration of these activities has evolved on the Nancy Foster over the three years summarized in this report. A strategy for improved operations and products has emerged over that time. Not only has the concurrent operation of multibeam and fisheries acoustics surveys been beneficial in terms of optimizing ship time and resources, this joint effort has advanced an integrated approach to characterizing bottom and mid-water habitats and the fishes associated with them. CCMA conducts multibeam surveys to systematically map and characterize coral reef ecosystems, resulting in products such as high resolution bathymetric maps, backscatter information, and benthic habitat classification maps. These products focus on benthic features and live bottom habitats associated with them. NCCOS Centers (the Center for Coastal Fisheries and Habitat Research and the Center for Coastal Environmental Health and Biomolecular Research) characterize coral reef ecosystems by using fisheries acoustics methods to capture biological information through the entire water column. Spatially-explicit information on marine resources derived from fisheries acoustics surveys, such as maps of fish density, supports marine spatial planning strategies and decision making by providing a biological metric for evaluating coral reef ecosystems and assessing impacts from pollution, fishing pressure, and climate change. Data from fisheries acoustics surveys address management needs by providing a measure of biomass in management areas, detecting spatial and temporal responses in distribution relative to natural and anthropogenic impacts, and identifying hotspots that support high fish abundance or fish aggregations. Fisheries acoustics surveys conducted alongside multibeam mapping efforts inherently couple water column data with information on benthic habitats and provide information on the heterogeneity of both benthic habitats and biota in the water column. Building on this information serves to inform resource managers regarding how fishes are organized around habitat structure and the scale at which these relationships are important. Where resource managers require place-based assessments regarding the location of critical habitats along with high abundances of fish, concurrent multibeam and fisheries acoustics surveys serve as an important tool for characterizing and prioritizing coral reef ecosystems. This report summarizes the evolution of fisheries acoustics surveys onboard the NOAA ship Nancy Foster from 2008 to 2010, in conjunction with multibeam data collection, aimed at characterizing benthic and mid-water habitats in high priority conservation areas around the USVI and Puerto Rico. It also serves as a resource for the continued development of consistent data products derived from acoustic surveys. By focusing on the activities of 2010, this report highlights the progress made to date and illustrates the potential application of fisheries data derived from acoustic surveys to the management of coral reef ecosystems.
Resumo:
The primary objective of this project, “the Assessment of Existing Information on Atlantic Coastal Fish Habitat”, is to inform conservation planning for the Atlantic Coastal Fish Habitat Partnership (ACFHP). ACFHP is recognized as a Partnership by the National Fish Habitat Action Plan (NFHAP), whose overall mission is to protect, restore, and enhance the nation’s fish and aquatic communities through partnerships that foster fish habitat conservation. This project is a cooperative effort of NOAA/NOS Center for Coastal Monitoring and Assessment (CCMA) Biogeography Branch and ACFHP. The Assessment includes three components; 1. a representative bibliographic and assessment database, 2. a Geographical Information System (GIS) spatial framework, and 3. a summary document with description of methods, analyses of habitat assessment information, and recommendations for further work. The spatial bibliography was created by linking the bibliographic table developed in Microsoft Excel and exported to SQL Server, with the spatial framework developed in ArcGIS and exported to GoogleMaps. The bibliography is a comprehensive, searchable database of over 500 selected documents and data sources on Atlantic coastal fish species and habitats. Key information captured for each entry includes basic bibliographic data, spatial footprint (e.g. waterbody or watershed), species and habitats covered, and electronic availability. Information on habitat condition indicators, threats, and conservation recommendations are extracted from each entry and recorded in a separate linked table. The spatial framework is a functional digital map based on polygon layers of watersheds, estuarine and marine waterbodies derived from NOAA’s Coastal Assessment Framework, MMS/NOAA’s Multipurpose Marine Cadastre, and other sources, providing spatial reference for all of the documents cited in the bibliography. Together, the bibliography and assessment tables and their spatial framework provide a powerful tool to query and assess available information through a publicly available web interface. They were designed to support the development of priorities for ACFHP’s conservation efforts within a geographic area extending from Maine to Florida, and from coastal watersheds seaward to the edge of the continental shelf. The Atlantic Coastal Fish Habitat Partnership has made initial use of the Assessment of Existing Information. Though it has not yet applied the AEI in a systematic or structured manner, it expects to find further uses as the draft conservation strategic plan is refined, and as regional action plans are developed. It also provides a means to move beyond an “assessment of existing information” towards an “assessment of fish habitat”, and is being applied towards the National Fish Habitat Action Plan (NFHAP) 2010 Assessment. Beyond the scope of the current project, there may be application to broader initiatives such as Integrated Ecosystem Assessments (IEAs), Ecosystem Based Management (EBM), and Marine Spatial Planning (MSP).
Resumo:
The overall purpose of this project was to collect available information on the characteristics of essential fish habitats in protected and non-protected marine areas around the islands of Puerto Rico. Specifically, this project compiled historical information on benthic habitats and the status of marine resources into a Geographic Information System (GIS) by digitizing paper copies of existing marine geologic maps that were developed for the Caribbean Fishery Management Council (CFMC) for areas around the Commonwealth of Puerto Rico. In addition, information on benthic habitat types, Essential Fish Habitat (EFH) requirements, and fishing and non-fishing impacts to marine resources were compiled for two priority areas: La Parguera and Vieques. The information obtained will help to characterize and select habitats for future monitoring of impacts of fishing and non-fishing activities and to develop management recommendations for conservation of important marine habitats. The project focused specifically on areas identified as priorities for conservation by the Puerto Rico Department of Natural and Environmental Resources (DNER) and the Local Action Strategy Overfishing Group.
Resumo:
In 2004, Congress reauthorized the Harmful Algal Bloom and Hypoxia Research and Control Act of 1998 with the Harmful Algal Bloom and Hypoxia Amendments Act (HABHRCA 2004). The 2004 legislation required the generation of five reports, including this "Scientific Assessment of Freshwater Harmful Algal Blooms." HABHRCA 2004 stipulates that this report 1) examine the causes, consequences, and economic costs of freshwater HABs, 2) establish priorities and guidelines for a research program on freshwater HABs, and 3) make recommendations to improve coordination among Federal agencies with respect to research on HABs in freshwater environments. This report is divided into five chapters: Chapter 1 provides the legislative background and process for developing the report, Chapter 2 describes the problem of freshwater and inland HABs in the United States, Chapter 3 outlines the current Federal efforts in freshwater and inland HAB research and response, Chapter 4 discusses the future research priorities, and Chapter 5 delineates opportunities for coordination to advance research efforts. The document is based, in large part, on the proceedings (Hudnell 2008) of the International Symposium on Cyanobacterial Harmful Algal Blooms, a meeting convened by EPA and sponsored by a variety of Federal agencies, to describe current scientific knowledge and identify priorities for future research on CyanoHABs. This report offers a plan for coordinating the important research that is currently ongoing in the United States and for guiding future research directions for Federal programs as well as for state, local, private, and academic institutions in order to maximize advancements. To this end, the Interagency Working Group on Harmful Algal Blooms, Hypoxia, and Human Health (IWG-4H) identifies seven priorities, all of equal weight, for freshwater HAB research and response. These priorities represent research areas where there is the greatest potential for progress in freshwater HAB research. This report does not attempt to assess the relative importance of freshwater HAB research compared to other research areas or other priorities for Federal or state investment.
Resumo:
This report, "Harmful Algal Bloom Management and Response: Assessment and Plan" reviews and evaluates Harmful Algal Bloom (HAB) management and response efforts, identifies current prevention, control, and mitigation programs for HABs, and presents an innovative research, event response, and infrastructure development plan for advancing the response to HABs. In December 2004, Congress enacted and the President signed into law the Harmful Algal Bloom and Hypoxia Amendments Act of 2004, (HABHRCA 2004). The reauthorization of HABHRCA acknowledged that HABs are one of the most scientifically complex and economically damaging coastal issues challenging our ability to safeguard the health of our Nation’s coastal ecosystems. The Administration further recognized the importance of HABs as a high priority national issue by specifically calling for the implementation of HABHRCA in the President’s U.S. Ocean Action Plan. HABHRCA 2004 requires four reports to assess and recommend research programs on HABs in U.S. waters. This document comprises two linked reports specifically aimed at improving HAB management and response: the Prediction and Response Report and the follow-up plan, the National Scientific Research, Development, Demonstration, and Technology Transfer (RDDTT) Plan on Reducing Impacts from Harmful Algal Blooms. This document was prepared by the Interagency Working Group on Harmful Algal Blooms, Hypoxia, and Human Health, which was chartered through the Joint Subcommittee on Ocean Science and Technology of the National Science and Technology Council and the Interagency Committee on Ocean Science and Resource Management Integration. This report complements and expands upon HAB-related priorities identified in Charting the Course for Ocean Science in the United States for the Next Decade: An Ocean Research Priorities Plan and Implementation Strategy, recently released by the Joint Subcommittee on Ocean Science and Technology. It draws from the contributions of numerous experts and stakeholders from federal, state, and local governments, academia, industry, and non-governmental organizations through direct contributions, previous reports and planning efforts, a public comment period, and a workshop convened to develop strategies for a HAB management and response plan. Given the importance of the Nation’s coastal ocean, estuaries, and inland waters to our quality of life, our culture, and the economy, it is imperative that we move forward to better understand and mitigate the impacts of HABs which threaten all of our coasts and inland waters. This report is an effort to assess the extent of federal, state and local efforts to predict and respond to HAB events and to identify opportunities for charting a way forward.
Resumo:
Mangrove, a tidal wetland, is a good example of complex land and water system whose resource attributes is neither fully understood from an ecological perspective nor valued comprehensively in economic terms. With increased ecological and social perception of the functions of wetlands, the utility and relative values will increase. The perception, however, varies from society to society. It must be recognized that mangrove forests differ greatly in local conditions and in their ability to produce a wide variety of economic products. What may be highly productive strategy for one country may have little meaning to its neighbor. Therefore, it becomes essential that from among diversity of potential uses of the mangrove environment, specific uses will have to be decided, and management plan developed on site, or area specific basis. It is therefore necessary to arrive at a balance between the views of the ecologists and economists on the management of mangroves. Biological conservation should encompass resource management in the sense that integrity of the biological and physical attributes of the resource base should be sustained and man-induced management practices should not alter an ecosystem to the extent that biological production is eliminated. Sustained yield management for food, fiber and fuel would serve to sustain local fisheries while generating new economic enterprises. This requires the recognition of mangrove environment as a resource with economic value, and managed according to local conditions and national priorities.
Resumo:
The priorities for the revised National Plan of Action include: strengthening current regulations; improved data collection of landings; identifying breeding and nursery grounds; study of ecology and biology of sharks; improved data acquisition of shark products and trade; and active enforcement at sea, landing sites and markets.
Resumo:
Socio-economic Monitoring (SocMon) is an approach and set of tools for conducting socio-economic monitoring of changes in coastal communities. Key considerations included: importance of local partnerships; government and civil society partnerships; emphasis of adapting SocMon to local needs and priorities; capacity building; engaging with local stakeholders; inter and intra-regional collaboration; importance of language; and importance of language.