56 resultados para Population distribution
Resumo:
A deep-water trapping survey in the Palauan archipelago, Western Caroline Islands, has revealed an abundance of the Japanese red crab, Chaceon granulatus. The recorded depth range (250-900 m) is similar to that of other geryonids, but the large numbers of females caught below 700 m is atypical. Mean yields in excess of 5 kg crabs plus 1 kg shrimp, Heterocarpus laevigatus, by-catch per trap-night were attainable at optimum depths. Chaceon granulatus is apparently a very large geryonid, with maximum weights of 2.02 kg and 1.51 kg recorded for male and female specimens, respectively. A range of body colors was observed: Orange-red shades appear to dominate the deeper waters (below 500 m) while yellow-tan colors are more abundant in the upper reaches. Preliminary evidence suggests that Chaceon granulatus is highly marketable, and the infrastructure in Palau is such that crabs could either be marketed fresh locally or airfreighted to Japan as a quick-frozen product. The high post-trapping survival rates observed indicate that maintaining crabs in live-holding tanks may be a feasible option. The large catches and quality of deep-water crabs taken suggests that the Palauan population of Chaceon granulatus may be able to support a small-scale fishery. It is not yet known whether this population is unusually large or whether these findings typify the deep forereef fauna of the region.
Resumo:
Cobia (Rachycentron canadum) is a pelagic, migratory species with a transoceanic distribution in tropical and subtropical waters. Recreational fishing pressure on Cobia in the United States has increased substantially during the last decade, especially in areas of its annual inshore aggregations, making this species potentially susceptible to overfishing. Although Cobia along the Atlantic and Gulf coasts of the southeastern United States are currently managed as a single fishery, the genetic composition of Cobias in these areas is unclear. On the basis of a robust microsatellite data set from collections along the U.S. Atlantic coast (2008–09), offshore groups were genetically homogenous. However, the 2 sampled inshore aggregations (South Carolina and Virginia) were genetically distinct from each other, as well as from the offshore group. The recapture of stocked fish within their release estuary 2 years after release indicates that some degree of estuarine fidelity occurs within these inshore aggregations and supports the detection of their unique genetic structure at the population level. These results complement the observed high site fidelity of Cobias in South Carolina and support a recent study that confirms that Cobia spawn in the inshore aggregations. Our increased understanding of Cobia life history will be beneficial for determining the appropriate scale of fishery management for Cobia.
Resumo:
Management agencies often use geopolitical boundaries as proxies for biological boundaries. In Hawaiian waters a single stock is recognized of common bottlenose dolphins, Tursiops truncatus, a species that is found both in open water and near-shore among the main Hawaiian Islands. To assess population structure, we photo-identified 336 distinctive individuals from the main Hawaiian Islands, from 2000 to 2006. Their generally shallow-water distribution, and numerous within-year and between-year resightings within island areas suggest that individuals are resident to the islands, rather than part of an offshore population moving through the area. Comparisons of identifications obtained from Kaua‘i/Ni‘ihau, O‘ahu, the “4-island area,” and the island of Hawai‘i showed no evidence of movements among these island groups, although movements from Kaua‘i to Ni‘ihau and among the “4-islands” were documented. A Bayesian analysis examining the probability of missing movements among island groups, given our sample sizes for different areas, indicates that interisland movement rates are less than 1% per year with 95% probability. Our results suggest the existence of multiple demographically independent populations of island-associated common bottlenose dolphins around the main Hawaiian islands.
Resumo:
Recruitment of bay anchovy (Anchoa mitchilli) in Chesapeake is related to variability in hydrological conditions and to abundance and spatial distribution of spawning stock biomass (SSB). Midwater-trawl surveys conducted for six years, over the entire 320-km length of the bay, provided information on anchovy SSB, annual spatial patterns of recruitment, and their relationships to variability in the estuarine environment. SSB of anchovy varied sixfold in 1995–2000; it alone explained little variability in young-of-the-year (YOY) recruitment level in October, which varied ninefold. Recruitments were low in 1995 and 1996 (47 and 31 Z 109) but higher in 1997–2000 (100 to 265 Z 109). During the recruitment process the YOY population migrated upbay before a subsequent fall-winter downbay migration. The extent of the downbay migration by maturing recruits was greatest in years of high freshwater input to the bay. Mean dissolved oxygen (DO) was more important than freshwater input in controlling distribution of SSB and shifts in SSB location between April– May (prespawning) and June–August (spawning) periods. Recruitments of bay anchovy were higher when mean DO was lowest in the downbay region during the spawning season. It is hypothesized that anchovy recruitment level is inversely related to mean DO concentration because low DO is associated with high plankton productivity in Chesapeake Bay. Additionally, low DO conditions may confine most bay anchovy spawners to the downbay region, where production of larvae and juveniles is enhanced. A modified Ricker stock-recruitment model indicated density-compensatory recruitment with respect to SSB and demonstrated the importance of spring-summer DO levels and spatial distribution of SSB as controllers of bay anchovy recruitment.
Resumo:
We examined the summer distribution of marine mammals off the northern Washington coast based on six ship transect surveys conducted between 1995 and 2002, primarily from the NOAA ship McArthur. Additionally, small boat surveys were conducted in the same region between 1989 and 2002 to gather photographic identification data on humpback whales (Megaptera novaeangliae) and killer whales (Orcinus orca) to examine movements and population structure. In the six years of ship survey effort, 706 sightings of 15 marine mammal species were made. Humpback whales were the most common large cetacean species and were seen every year and a total of 232 sightings of 402 animals were recorded during ship surveys. Highest numbers were observed in 2002, when there were 79 sightings of 139 whales. Line-transect estimates for humpback whales indicated that about 100 humpback whales inhabited these waters each year between 1995 and 2000; in 2002, however, the estimate was 562 (CV= 0.21) whales. A total of 191 unique individuals were identified photographically and mark recapture estimates also indicated that the number of animals increased from under 100 to over 200 from 1995 to 2002. There was only limited interchange of humpback whales between this area and feeding areas off Oregon and California. Killer whales were also seen on every ship survey and represented all known ecotypes of the Pacific Northwest, including southern and northern residents, transients, and offshore-type killer whales. Dall’s porpoise (Phocoenoides dalli) were the most frequently sighted small cetacean; abundance was estimated at 181−291 individuals, except for 2002 when we observed dramatically higher numbers (876, CV= 0.30). Northern fur seals (Callorhinus ursinus) and elephant seals (Mirounga angustirostris) were the most common pinnipeds observed. There were clear habitat differences related to distance offshore and water depth for different species.
Resumo:
We estimated the impact of striped bass (Morone saxatilis) predation on winter-run chinook salmon (Oncorhynchus tshawytscha) with a Bayesian population dynamics model using striped bass and winter-run chinook salmon population abundance data. Winter-run chinook salmon extinction and recovery probabilities under different future striped bass abundance levels were estimated by simulating from the posterior distribution of model parameters. The model predicts that if the striped bass population declines to 512,000 adults as expected in the absence of stocking, winter-run chinook salmon will have about a 28% chance of quasi-extinction (defined as three consecutive spawning runs of fewer than 200 adults) within 50 years. If stocking stabilizes the striped bass population at 700,000 adults, the predicted quasi-extinction probability is 30%. A more ambitious stocking program that maintains a population of 3 million adult striped bass would increase the predicted quasi-extinction probability to 55%. Extinction probability, but not recovery probability, was fairly insensitive to assumptions about density dependence. We conclude that winter-run chinook salmon face a serious extinction risk without augmentation of the striped bass population and that substantial increases in striped bass abundance could significantly increase the threat to winter-run chi-nook salmon if not mitigated by increasing winter chinook salmon survival in some other way.
Resumo:
Distribution, abundance, and several population features were studied in Ensenada de La Vela (Venezuela) between 1993 and 1998 as a first step in the assessment of local fisheries of swimming crabs. Arenaeus cribrarius was the most abundant species at the marine foreshore. Callinectes danae prevailed at the estuarine location. Callinectes bocourti was the most abundant species at the offshore. Abundances of A. cribrarius and C. danae fluctuated widely and randomly. Ovigerous females were almost absent. Adults of several species were smaller than previously reported. This study suggests that fisheries based on these swimming crabs probably will be restricted to an artisanal level because abundances appear too low to support industrial exploitation.
Resumo:
We examined seasonal and annual variation in numbers of Steller (northern) sea lions (Eumetopias jubatus) at the South Farallon Islands from counts conducted weekly from 1974 to 1996. Numbers of adult and subadult males peaked during the breeding season (May–July), whereas numbers of adult females and immature individuals peaked during the breeding season and from late fall through early winter (September–December). The seasonal pattern varied significantly among years for all sexes and age classes. From 1977 to 1996, numbers present during the breeding season decreased by 5.9% per year for adult females and increased by 1.9% per year for subadult males. No trend in numbers of adult males was detected. Numbers of immature individuals also declined by 4.5% per year during the breeding season but increased by 5.0% per year from late fall through early winter. Maximum number of pups counted declined significantly through time, although few pups were produced at the South Farallon Islands. The ratio of adult females to adult males averaged 5.2:1 and declined significantly with each year, whereas no trend in the ratio of pups to adult females was discernible. Further studies are needed to determine if reduced numbers of adult females in recent years have resulted from reduced survival of juvenile or adult females or from changes in the geographic distribution of females.
Resumo:
Triennial bottom trawl survey data from 1984 to 1996 were used to evaluate changes in the summer distribution of walleye pollock in the western and central Gulf of Alaska. Differences between several age groups of pollock were evaluated. Distribution was examined in relation to several physical characteristics, including bottom depth and distance from land. Interspecies associations were also analyzed with the Bray-Curtis clustering technique to better understand community structure. Our results indicated that although the population numbers decreased, high concentrations of pollock remained in the same areas during 1984–96. However, there was an increase in the number of stations where low-density pollock concentrations of all ages were observed, which resulted in a decrease in mean population density of pollock within the GOA region. Patterns emerging from our data suggested an alternative to Mac-Call’s “basin hypothesis” which states that as population numbers decrease, there should be a contraction of the population range to optimal habitats. During 1984–96 there was a concurrent precipitous decline in Steller sea lions in the Gulf of Alaska. The results of our study suggest that decreases in the mean density of adult pollock, the main food in the Steller sea lion diet, combined with slight changes in the distribution of pollock (age-1 pollock in particular) in the mid-1980s, may have contributed to decreased foraging efficiency in Steller sea lions. Our results support the prevailing conceptual model for pollock ontogeny, although there is evidence that substantial spawning may also occur outside of Shelikof Strait.
Resumo:
The rockfishes of the sebastid genus Sebastes are a very important fishery resource off the coasts of California and southern Oregon. How-ever, many of the 54 managed stocks of west coast rockfish have recently reached historically low population levels, leading fishery managers to re-examine current management practices. Management of rockfish stocks as multispecies aggregates, as opposed to independent stocks within the ground-fish fishery, can be more desirable when nontargeted bycatch, discard, and management complexity are considered. Rockfish assemblage structure and species co-occurrences were determined by using data from the Alaska Fisheries Science Center triennial continental shelf bottom trawl survey. The weight of rockfish species in trawl catches was expressed as a catch-per-unit-of-effort (CPUE) statistic, from which species spatial distributions, overlaps, diversity, and richness were analyzed. Multidimensional scaling of transformed CPUE data was employed in indirect gradient and multivariate partitioning analyses to quantify assemblage relationships. Results indicated that rockfish distributions closely match the bathymetry of coastal waters. Indirect gradient analysis suggested that depth and latitude are the principal factors in structuring the spatial distributions of rockfish on trawlable habitat. In addition, four assemblages were identified through the joint evaluation of species’ distributions and multivariate partitioning analyses: 1) deep-water slope; 2) northern shelf; 3) southern shelf; and 4) nearshore. The slope, shelf, and near-shore groups are found in depth ranges of 200–500 m, 100–250 m, and 50–150 m, respectively. The division of northern and southern shelf assemblages occurs over a broad area between Cape Mendocino and Monterey Canyon. The results of this analysis are likely to have direct application in the management of rockfish stocks off the coasts of southern Oregon and California.
Resumo:
Hydrographical and biological parameters of Thana Creek and Bombay Harbour were studied to assess the prevailing water quality. Zooplankton samples were collected from various stations during January 1975 to July 1975. The qualitative distribution of zooplankton was found to be very irregular and fluctuating. Copepods were the dominant taxa followed by lucifers, chaetognaths, decapod larvae, ctenophores, hydromedusae, fish larvae and polychaetes. To a certain extent the distribution of zooplankton is affected by variation in salinity during different seasons, also along the length of the creek. Pronounced effect of pollution on zooplankton biomass was also observed.
Resumo:
Distribution of planktonic fish eggs and larvae in the nearshore waters off Bombay was studied during November 1979 to December 1980. Monthly samples were collected along three transects (Versova, Mahim and Thana) covering eleven stations which represented different environmental conditions. Fish eggs and larvae were common in the area of study with maximum abundance in December 1979 and April/August 1980. Mean density of fish eggs was maximum along the Mahim transect while population of larvae was more in the Versova transect. Total number of families of fish larvae represented in the collections increased from nearshore to offshore area.
Resumo:
Distribution and abundance of mysids were studied in the nearshore waters off Bombay along 3 transects located off Versova, off Mahim and Thana creek covering eleven stations during November 1979 to December 1980. Maximum population of mysids was recorded during the premonsoon period. Density of mysids was more in Versova than at Mahim and Thana transects. Tidal variation and pollution load influenced the distribution of mysids. Swarming of Mesopodopsis zeylanica was observed in Versova creek during April 1980.
Resumo:
The area off Mithapur, Gujarat, India, is moderately rich in phytoplankton. The peak in phytoplankton population (av. 7.86 x 10 super(4)/l) was recorded in March. The average count of 0.71 x 10 super(4)/l observed in April was very low and later increased to 3.76 x 10 super(4)/l in December. Fifty-two species were recorded from the area. The most common species were Nitzschia closterium, N. pungens, N. seriata, N. sigma, Chaetoceros simplex, C. difficilis and C. sociale. The importance of Nitzschia spp as indicators of organically polluted environment was discussed.
Resumo:
Phytoplankton population (3.37-56.09 x 10 super(4) cells/1) and pigments (chil. a 1.10-26.8 mg/m super(3)) in the waters off Porbandar indicated wide variations. Higher cell counts and lower diversity of species were encountered in the nearshore waters as compared to the waters of the seaward side. The concentration of dissolved oxygen was correlated with the phytoplankton population and pigments. 71 species belonging to 28 genera of algae were recorded. Species of Nitzschia were dominant almost at all stations. Species of Chaetoceros were very common along the middle and western transects.