661 resultados para Marine Sponge
Resumo:
As threats to the marine environment continue to remain high, and conventional resource-management techniques have been found wanting, marine protected areas (MPAs) are being seen as a tool to address the abuse and destruction of the environment. This study discusses the social dimensions of MPAs in Tanzania, using the case of the Mafia Island Marine Park and the socioeconomic, political and cultural contexts within which Mafia people live their lives. (54 pp.)
Resumo:
Marine protected areas (MPAs) are being promoted around the world as an effective means of protecting marine and coastal resources and biodiversity. However, concerns have been raised about their impact on the livelihoods, culture and survival of small-scale and traditional fishing and coastal communities. Yet, as this study from Brazil shows, it is possible to use MPAs as a tool for livelihood-sensitive conservation. Based on detailed studies of three sites–the Peixe Lagoon National Park in Rio Grande do Sul, and the marine extractive reserves (MERs) of Mandira, São Paulo, and Corumbau, Bahia – the study shows how communities in Brazil have been able to use protected areas to safeguard their livelihoods against development and industrialization projects, like shrimp farms and tourist resorts. (68 pp.)
Resumo:
This study on marine protected areas (MPAs) in Mexico relies on a variety of data sources as well as the authors’ longstanding field experience, particularly in the Yucatan Peninsula, to analyze the design, establishment and operation of protected areas. It discusses two case studies of MPAs in detail and summarizes the findings from four others, focusing primarily on the role played by local communities in managing coastal and marine resources. The study also draws on the perspective of key informants, namely, Mexican experts on coastal and ocean management issues, including government officials, decisionmakers, researchers, members of non governmental organizations (NGOs), and consultants. (97 pp.)
Resumo:
The Channel Islands—sometimes called the Galapagos of North America—are known for their great beauty, rich biodiversity, cultural heritage, and recreational opportunities. In 1980, in recognition of the islands’ importance, the United States Congress established a national park encompassing 5 of California’s Channel Islands (Santa Barbara, Anacapa, Santa Cruz, Santa Rosa, and San Miguel Islands) and waters within 1 nautical mile of the islands. In the same year, Congress declared a national marine sanctuary around each of these islands, including waters up to 6 nautical miles offshore. Approximately 60,000 people visit the Channel Islands each year for aquatic recreation such as fishing, sailing, kayaking, wildlife watching, surfing, and diving. Another 30,000 people visit the islands for hiking, camping, and sightseeing. Dozens of commercial fishing boats based in Santa Barbara, Ventura, Oxnard, and other ports go to the Channel Islands to catch squid, spiny lobster, sea urchin, rockfish, crab, sheephead, flatfish, and sea cucumber, among other species. In the past few decades, advances in fishing technology and the rising number of fishermen, in conjunction with changing ocean conditions and diseases, have contributed to declines in some marine fishes and invertebrates at the Channel Islands. In 1998, citizens from Santa Barbara and Ventura proposed establishment of no-take marine reserves at the Channel Islands, beginning a 4-year process of public meetings, discussions, and scientific analyses. In 2003, the California Fish and Game Commission designated a network of marine protected areas (MPAs) in state waters around the northern Channel Islands. In 2006 and 2007, the National Oceanic and Atmospheric Administration (NOAA) extended the MPAs into the national marine sanctuary’s deeper, federal waters. To determine if the MPAs are protecting marine species and habitats, scientists are monitoring ecological changes. They are studying changes in habitats; abundance and size of species of interest; the ocean food web and ecosystem; and movement of fish and invertebrates from MPAs to surrounding waters. Additionally, scientists are monitoring human activities such as commercial and recreational fisheries, and compliance with MPA regulations. This booklet describes some results from the first 5 years of monitoring the Channel Islands MPAs. Although 5 years is not long enough to determine if the MPAs will accomplish all of their goals, this booklet offers a glimpse of the changes that are beginning to take place and illustrates the types of information that will eventually be used to assess the MPAs’ effectiveness. (PDF contains 24 pages.)
Resumo:
Special Publication 2 On-line version On-line version includes links to the following files (these files are not included into publication): Bacterioplankton [pdf] Phytoplankton [pdf] Zooplankton [pdf] Non-exploited fish and invertebrates [pdf] Commercially-important fish and invertebrates [pdf] Marine birds [pdf] Mammals [pdf] Supplemental table of Unknowns [html]
Resumo:
In the current context of natural resource management, marine protected areas (MPAs) are being widely propagated as an important tool for the conservation of marine and fisheries resources. The International Collective in Support of Fishworkers (ICSF) recently undertook a series of studies on MPAs in India to highlight the various legal, institutional, policy and livelihoods issues that confront fishing and coastal communities. In order to discuss the findings of these case studies and to suggest proposals for livelihood-sensitive conservation and management of coastal and fisheries resources through participatory processes, ICSF organized a two-day workshop on ‘Social Dimensions of Marine Protected Area Implementation in India: Do Fishing Communities Benefit?’ at Chennai on 21-22 January 2009. This publication—the India MPA Workshop Proceedings—contains the prospectus of the workshop, a report of the proceedings and the consensus statement that was reached by organizations and individuals who particapated in the workshop. This publication will be useful for fishworkers, non-governmental organizations, policymakers, trade unions, researchers and others interested in natural resource management and coastal and fishing communities.
Resumo:
Research cruises were conducted in August-October 2007 to complete the third annual remotely operated vehicle (ROV)-based assessments of nearshore rocky bottom finfish at ten sites in the northern Channel Islands. Annual surveys at the Channel Islands have been conducted since 2004 at four sites and were expanded to ten sites in 2005 to monitor potential marine protected area (MPA)effects on baseline fish density. Six of the ten sites are in MPAs and four in nearby fished reference areas. In 2007 the amount of soft-only substrate on the 141 track lines surveyed was again estimated in real-time in order to target rocky bottom habitat. These real-time estimates of hard and mixed substrate for all ten sites averaged 57%, 1% more than the post-processed average of 56%. Surveys generated 69.9 km of usable video for use in finfish density calculations, with target rocky bottom habitat accounting for 56% (39.1 km) for all sites combined. The amount of rocky habitat sampled by site averaged 3.8 km and ranged from 3.3 km sampled at South Point, a State Marine Reserve (SMR) off Santa Rosa Island, to 4.7 km at Anacapa Island SMR. A sampling goal of 75 transects at all 10 sites was met using real-time habitat estimates combined with precautionary over-sampling by 10%. A total of seventy kilometers of sampling is projected to produce at least seventy-five 100 m2 transects per site. Thirteen of 26 finfish taxa observed were selected for quantitative evaluation over the time series based on a minimum criterion of abundance (0.05/100 m2). Ten of these 13 finfish appear to be more abundant at the state marine reserves relative to fished areas when densities were averaged across the 2005 to 2007 period. One of the species that appears to be more abundant in fished areas was señorita, a relatively small prey species that is not a commercial or recreational target. (PDF contains 83 pages.)
Resumo:
The following discussion presents information on human-made reefs and their role--as one tool of many--in the management of both fisheries and habitat. Principal subjects covered in this paper include a definition of marine habitat improvement and determination of its attainment, the present applications of reef construction technology to environmental situations both generally and in three case-studies, and suggested desirable attributes for incorporation into future use of this technology. (PDF has 11 pages.)
Resumo:
pdf has 37p.
Resumo:
pdf has 46p.
Resumo:
Mollusks were sorted from samples of shell hash (obtained as bycatch during NOAA-sponsored studies of larval and juvenile fish distribution), and analyzed to gain qualitative insights on species composition, distribution and habitat affinities of the molluscan fauna on the continental shelf off Georgia. Samples came from beam trawls at 37 stations located in the immediate vicinity and offshore of the Gray’s Reef National Marine Sanctuary (GRNMS) at depths of 4.9 to 103 m. Two hundred sixty-three (263) taxa of mollusks (~58% as dead shells only) were collected, and nearly all (~99%) were identified to the species level. Ninety-seven of these taxa appeared in samples from one or more of the four stations established near the corners of the GRNMS. Samples were highly variable in terms of appearance, volume and species composition of mollusks, reflecting the extreme patchiness of benthic habitats within this region of the continental shelf. With very few exceptions, the mollusks were generally characteristic of either the Carolinian or Caribbean faunal provinces. The Georgia continental shelf, however, was outside the previously reported ranges for at least 16 of the species reported here. Most of these extralimital species were known previously from the East Coast of Florida, and represented northerly range extensions of 1-5° Latitude (110-560 km). One species represented a more significant range extension from the Bahamas and the southern Caribbean, and two represented southerly range extensions, known previously from only as close as off North Carolina. The high incidence of range extensions found in this study and the potential for discovery of additional species are discussed in the context of the diversity and patchiness of benthic habitats on the continental shelf of the region, and the sensitivity of species recruitment to variability in Gulf Stream patterns and global climate change. (PDF contains 52 pages)
Resumo:
(PDF has 47 pages.)
Resumo:
On 15-16 January 2005, three offshore species of cetaceans (33 short-finned pilot whales, Globicephala macrorhynchus, one minke whale, Balaenoptera acutorostrata, and two dwarf sperm whales, Kogia sima) stranded alive on the beaches of North Carolina. The pilot whales stranded near Oregon Inlet, the minke whale in northern North Carolina, and the dwarf sperm whales near Cape Hatteras. Live strandings of three species in one weekend was unique in North Carolina and qualified as an Unusual Mortality Event. Gross necropsies were conducted on 16-17 January 2005 on 27 pilot whales, two dwarf sperm whales, and the minke whale. Samples were collected for clinical pathology, parasitology, gross pathology, histopathology, microbiology and serology. There was variation in the number of animals sampled for each collection type, however, due to carcasses washing off the beach or degradation in carcass condition during the course of the response. Comprehensive histologic examination was conducted on 16 pilot whales, both dwarf sperm whales, and the minke whale. Limited organ or only head tissue suites were obtained from nine pilot whales. Histologic examination of tissues began in February 2005 and concluded in December 2005 when final sampling was concluded. Neither the pilot whales nor dwarf sperm whales were emaciated although none had recently ingested prey in their stomachs. The minke whale was emaciated; it was likely a dependent calf that became separated from the female. Most serum biochemistry abnormalities appear to have resulted from the stranding and indicated deteriorating condition from being on land for an extended period. Three pilot whales had clinical evidence of pre-existing systemic inflammation, which was supported by histopathologic findings. Although gross and histologic lesions involving all organ systems were noted, consistent lesions were not observed across species. Verminous pterygoid sinusitis and healed fishery interactions were seen in pilot whales but neither of these changes were causes of debilitation or death. In three pilot whales and one dwarf sperm whale there was evidence of clinically significant disease in postcranial tissues which led to chronic debilitation. Cardiovascular disease was present in one pilot whale and one dwarf sperm whale; musculoskeletal disease and intra-abdominal granulomas were present in two pilot whales. These lesions were possible, but not definitive, causal factors in the stranding. Remaining lesions were incidental or post-stranding. The minke whale and three of five tested pilot whales had positive morbillivirus titers (≥1:8 with one at >1:256), but there was no histologic evidence of active viral infection. Parasites (nematodes, cestodes, and trematodes) were collected from 26 pilot whales and two dwarf sperm whales. Sites of collection included stomach, nasal/pterygoid, peribullar sinuses, blubber, and abdominal cavity. Parasite species, locations and loads were within normal limits for free-ranging cetaceans and were not considered causative for the stranding event. Gas emboli lesions which were considered consistent with or diagnostic of sonarassociated strandings of beaked whales or small cetaceans were not found in the whales stranded as part of UMESE0501Sp. Twenty-five heads were examined with nine specific anatomic locations of interest: extramandibular fat, intramandibular fat, auditory meatus, peribullar acoustic fat, peribullar soft tissue, peribullar sinus, pterygoid sinus, melon, and brain. The common finding in all examined heads was verminous pterygoid sinusitis. Intramandibular adipose tissue reddening, typically adjacent to the vascular plexus, was observed in some individuals and could represent localized hemorrhage resulting from vascular rete rupture, hypostatic congestion, or erythrocyte rupture during the freeze/thaw cycle. One cetacean had peracute to acute subdural hemorrhage that likely occurred from thrashing on the beach post-stranding, although its occurrence prior to stranding cannot be excluded. Information provided to NMFS by the U.S. Navy indicated routine tactical mid-frequency sonar operations from individual surface vessels over relatively short durations and small spatial scales within the area and time period investigated. No marine mammals were detected by marine mammal observers on operational vessels; standard operating procedure for surface naval vessels operating mid-frequency sonar is the use of trained visual lookouts using high-powered binoculars. Sound propagation modeling using information provided to NMFS indicated that acoustic conditions in the vicinity likely depended heavily on position of the receivers (e.g., range, bearing, depth) relative to that of the sources. Absent explicit information on the location of animals meant that it was not possible to estimate received acoustic exposures from active sonar transmissions. Nonetheless, the event was associated in time and space with naval activity using mid-frequency active sonar. It also had a number of features in common (e.g., the “atypical” distribution of strandings involving multiple offshore species, all stranding alive, and without evidence of common infectious or other disease process) with other sonar-related cetacean mass stranding events. Given that this event was the only stranding of offshore species to occur within a 2-3 day period in the region on record (i.e., a very rare event), and given the occurrence of the event simultaneously in time and space with a naval exercise using active sonar, the association between the naval sonar activity and the location and timing of the event could be a causal rather than a coincidental relationship. However, evidence supporting a definitive association is lacking, and, in particular, there are differences in operational/environmental characteristics between this event and previous events where sonar has apparently played a role in marine mammal strandings. This does not preclude behavorial avoidance of noise exposure. No harmful algal blooms were present along the Atlantic coast south of the Chesapeake Bay during the months prior to the event. Environmental conditions, including strong winds, changes in upwelling- to downwelling-favorable conditions, and gently sloping bathymetry, were consistent with conditions which have been correlated with other mass strandings. In summary, we did not find commonality in gross and histologic lesions that would indicate a single cause for this stranding event. Three pilot whales and one dwarf sperm whale had debilitating conditions identified that could have contributed to stranding, one pilot whale had a debilitating condition (subdural hemorrhage) that could have been present prior to or resulting from stranding. While the pilot and dwarf sperm whale strandings may have had a common cause, the minke whale stranding was probably just coincidental. On the basis of examination of physical evidence in the affected whales, however, we cannot definitively conclude that there was or was not a causal link between anthropogenic sonar activity or environmental conditions (or a combination of these factors) and the strandings. Overall, the cause of UMESE0501Sp in North Carolina is not and likely will not be definitively known. (PDF contains 240 pages)
Resumo:
To be in compliance with the Endangered Species Act and the Marine Mammal Protection Act, the United States Department of the Navy is required to assess the potential environmental impacts of conducting at-sea training operations on sea turtles and marine mammals. Limited recent and area-specific density data of sea turtles and dolphins exist for many of the Navy’s operations areas (OPAREAs), including the Marine Corps Air Station (MCAS) Cherry Point OPAREA, which encompasses portions of Core and Pamlico Sounds, North Carolina. Aerial surveys were conducted to document the seasonal distribution and estimated density of sea turtles and dolphins within Core Sound and portions of Pamlico Sound, and coastal waters extending one mile offshore. Sea Surface Temperature (SST) data for each survey were extracted from 1.4 km/pixel resolution Advanced Very High Resolution Radiometer remote images. A total of 92 turtles and 1,625 dolphins were sighted during 41 aerial surveys, conducted from July 2004 to April 2006. In the spring (March – May; 7.9°C to 21.7°C mean SST), the majority of turtles sighted were along the coast, mainly from the northern Core Banks northward to Cape Hatteras. By the summer (June – Aug.; 25.2°C to 30.8°C mean SST), turtles were fairly evenly dispersed along the entire survey range of the coast and Pamlico Sound, with only a few sightings in Core Sound. In the autumn (Sept. – Nov.; 9.6°C to 29.6°C mean SST), the majority of turtles sighted were along the coast and in eastern Pamlico Sound; however, fewer turtles were observed along the coast than in the summer. No turtles were seen during the winter surveys (Dec. – Feb.; 7.6°C to 11.2°C mean SST). The estimated mean surface density of turtles was highest along the coast in the summer of 2005 (0.615 turtles/km², SE = 0.220). In Core and Pamlico Sounds the highest mean surface density occurred during the autumn of 2005 (0.016 turtles/km², SE = 0.009). The mean seasonal abundance estimates were always highest in the coastal region, except in the winter when turtles were not sighted in either region. For Pamlico Sound, surface densities were always greater in the eastern than western section. The range of mean temperatures at which turtles were sighted was 9.68°C to 30.82°C. The majority of turtles sighted were within water ≥ 11°C. Dolphins were observed within estuarine waters and along the coast year-round; however, there were some general seasonal movements. In particular, during the summer sightings decreased along the coast and dolphins were distributed throughout Core and Pamlico Sounds, while in the winter the majority of dolphins were located along the coast and in southeastern Pamlico Sound. Although relative numbers changed seasonally between these areas, the estimated mean surface density of dolphins was highest along the coast in the spring of 2006 (9.564 dolphins/km², SE = 5.571). In Core and Pamlico Sounds the highest mean surface density occurred during the autumn of 2004 (0.192 dolphins/km², SE = 0.066). The estimated mean surface density of dolphins was lowest along the coast in the summer of 2004 (0.461 dolphins/km², SE = 0.294). The estimated mean surface density of dolphins was lowest in Core and Pamlico Sounds in the summer of 2005 (0.024 dolphins/km², SE = 0.011). In Pamlico Sound, estimated surface densities were greater in the eastern section except in the autumn. Dolphins were sighted throughout the entire range of mean SST (7.60°C to 30.82°C), with a tendency towards fewer dolphins sighted as water temperatures increased. Based on the findings of this study, sea turtles are most likely to be encountered within the OPAREAs when SST is ≥ 11°C. Since sea turtle distributions are generally limited by water temperature, knowing the SST of a given area is a useful predictor of sea turtle presence. Since dolphins were observed within estuarine waters year-round and throughout the entire range of mean SST’s, they likely could be encountered in the OPAREAs any time of the year. Although our findings indicated the greatest number of dolphins to be present in the winter and the least in the summer, their movements also may be related to other factors such as the availability of prey. (PDF contains 28 pages)
Resumo:
The ontogeny of haematopoiesis in the perciform fish, spot Leiostomus xanthurus, differed from that reported as the norm for fishes, as exemplified by the cypriniform zebrafish Danio rerio, and observed in the batrachoidiform oyster toadfish Opsanus tau. Erythropoiesis in spot was first evident in the head kidney of yolk-sac larvae 3 days after hatching (DAH). No embryonic intermediate cell mass (ICM) of primitive stem cells or blood islands on the yolk were apparent within embryos. Erythrocytes were first evident in circulation near the completion of yolk absorption, c. 5 DAH, when larvae were c. 20 mm notochord length (LN). Erythrocyte abundance increased rapidly with larval development for c. 14 to 16 DAH, then became highly variable following changes in cardiac chamber morphology and volume. Erythrocytic haemoglobin (Hb) was not detected within whole larvae until they were 12 DAH or c. 31 mm LN, well after yolk and oil-globule absorption. The Hb was not quantified until larvae were >47 DAH or >7 mm standard length. The delayed appearance of erythrocytes and Hb in spot was similar to that reported for other marine fishes with small embryos and larvae. In oyster toadfish, a marine teleost that exhibits large embryos and larvae, the ICM and Hb were first evident in two bilateral slips of erythropoietic tissue in the embryos, c. 5 days after fertilization. Soon thereafter, erythrocytes were evident in the heart, and peripheral and vitelline circulation. Initial haematopoiesis in oyster toadfish conformed with that described for zebrafish. While the genes that code for the development of haematopoiesis are conserved among vertebrates, gene expression lacks phylogenetic pattern among fishes and appears to conform more closely with phenotypic expression related to physiological and ecological influences of overall body size and environmental oxygen availability.