57 resultados para MICROBIAL COMMUNITY STRUCTURE
Resumo:
This thesis explored the relationship between hydrological variability and associated changes in fish communities in the upper Salado river lakes (Pampa plain, Argentina). The sampling design included five sites along the river connected lakes being explored for fish, hydrological and environmental data during different hydrological conditions. The temporal dynamic of main environmental characteristics of these lakes show that hydrology largely regulates some of the most important factors influencing fish ecology. Changes in fish communities associated with this hydrological and environmental dynamic allow to speculate a first approach towards the functioning of the system as a whole. Following oscillation between droughts and floods, study lakes have shown significant changes on abundance of major fish species, as well as on their recruitment success, which finally leaded to marked changes in fish community structure. Interestingly, trophic structure of communities did not change as much. iOdontesthes bonariensis/i was more abundant during droughts and in saltier sites but also displayed an improvement in recruitment success during these harsh abiotic conditions. Conversely, the abundance of iParapimelodus valenciennis, Cyphocharax voga/i and iCyprinus carpio/i as well as its recruitment success, were largely favoured by lower water residence times and total salinity. This dichotomy is mainly based on different life history strategies of these species against flor and environmental variability and it support the existence of different functional groups among the fish species of upper Salado river lakes. iOligosarcus jenynsii/i did not showed as evident functional response. In conclusion, hydrological and environmental variability can be considered as one of the main factors regulating the functioning and structure of fish communities in these very shallow lowland river lakes of the Pampa plain. Following these results some implications for an eventual regulation of the river regime are discussed.
Resumo:
The environmental impact of agro-chemicals for fish production was extensively reviewed. The positive contribution of agro- chemicals and the devastating effect on aquaculture was x-rayed to alert users to this obvious environmental problem. Lime and fertilizers are commonly used in fish farming to increase pH of pond soil and water and to increase alkalinity and hardness, reduce humic acid content and to initiate primary and secondary productivity. Devastating effect of lime on environment is likely to be minimal. In the case of fertilizers, over utilization of this agro-chemical could impair water quality as phytoplankton bloom become excessive which consequently raises BOD. The use of Therapeutants in aquaculture was discovered to be more popular in Europe and North America than in the tropics (Africa). Commonly used therapeutants include antibiotics and antimicrobials. For fish pathology chemicals like formalin, potassium permanganate, Dipterex and malachite green are widely in use. Effluent from farms where these chemicals are commonly in use can distort the aquatic ecosystem. The changes in water quality, aquatic community structure and productivity caused by intensive aquaculture are typical of the impacts of pollution from a wide variety of sources like sewage, agricultural run-off and effluent discharges from industry
Resumo:
Improvements in methods for the detection and enumeration of microbes in water, particularly the application of techniques of molecular biology, have highlighted shortcomings in the ”standard methods” for assessing water quality. Higher expectations from the consumer and increased publicity associated with pollution incidents can lead to an uncoupling of the cycle which links methodological development with standard-setting and legislation. The new methodology has also highlighted problems within the water cycle, related to the introduction, growth and metabolism of microbes. A greater understanding of the true diversity of the microbial community and the ability to transmit genetic information within aquatic systems ensures that the subject of this symposium and volume provides an ideal forum to discuss the problems encountered by both researcher and practitioner.
Resumo:
The coastal Pacific Ocean off northern and central California encompasses the strongest seasonal upwelling zone in the California Current ecosystem. Headlands and bays here generate complex circulation features and confer unusual oceanographic complexity. We sampled the coastal epipelagic fish community of this region with a surface trawl in the summer and fall of 2000–05 to assess patterns of spatial and temporal community structure. Fifty-three species of fish were captured in 218 hauls at 34 fixed stations, with clupeiform species dominating. To examine spatial patterns, samples were grouped by location relative to a prominent headland at Point Reyes and the resulting two regions, north coast and Gulf of the Farallones, were plotted by using nonmetric multidimensional scaling. Seasonal and interannual patterns were also examined, and representative species were identified for each distinct community. Seven oceanographic variables measured concurrently with trawling were plotted by principal components analysis and tested for correlation with biotic patterns. We found significant differences in community structure by region, year, and season, but no interaction among main effects. Significant differences in oceanographic conditions mirrored the biotic patterns, and a match between biotic and hydrographic structure was detected. Dissimilarity between assemblages was mostly the result of differences in abundance and frequency of occurrence of about twelve common species. Community patterns were best described by a subset of hydrographic variables, including water depth, distance from shore, and any one of several correlated variables associated with upwelling intensity. Rather than discrete communities with clear borders and distinct member species, we found gradients in community structure and identified stations with similar fish communities by region and by proximity to features such as the San Francisco Bay.
Resumo:
Rockpools on a tropical f lat reef off the southeastern coast of Brazil were sampled to determine the influence of pool morphometry and water characteristics on fish community structure. The pool closest to the inner fringe of the reef had lower salinity and higher temperature due to inflow of groundwater. The other pools varied only with respect to their morphometric characteristics, algal cover, and bottom composition. Species with a strong affinity for estuarine- like waters characterized the pool closest to the beach and distinguished its fish community from that of the other pools. Instead of being strongly structured by the physicochemical setting and position in the reef, fish communities of the other pools were determined by behavioral preferences and intra- and interspecific interactions. Differences in community structure were related to pool size (the larger sizes permitting the permanency of schooling species), to algal cover (which allowed camouflage for large predatory species), to bottom composition (which provided substrate for turf flora available to territorial herbivores), and to ecological effects (e.g., competition, territoriality, and predation). Although distribution patterns of tidepool fishes have previously been related to the availability of niches, independent of pool position in the reef, our results show synergistic interactions between water properties, presence or absence of niches, and ecological relationships in structuring tidepool fish communities.
Resumo:
The community structure of fishes associated with pelagic Sargassum spp. and open water lacking Sargassum was examined during summer and fall cruises, 1999–2003, in the Gulf Stream off North Carolina. Significantly more individual fishes (n= 18,799), representing at least 80 species, were collected from samples containing Sargassum habitat, compared to 60 species (n=2706 individuals) collected from openwater habitat. The majority (96%) of fishes collected in both habitats were juveniles, and planehead filefish (Stephanolepis hispidus) dominated both habitats. Regardless of sampling time (day or night), Sargassum habitat yielded significantly higher numbers of individuals and species compared with open-water collections. Overall, fishes collected by neuston net tows from Sargassum habitat were significantly larger in length than fishes collected from open-water habitat with neuston nets. A significant positive, linear relationship existed between numbers of fishes and the quantity of Sargassum collected by neuston net. Underwater video recordings indicated a layered structure of fishes among and below the algae and that smaller fishes were more closely associated with the algae than larger fishes. Observations of schooling behaviors of filefishes (Monacanthidae), dolphinfish (Coryphaena hippurus), and jacks (Carangidae), and fish-jellyfish associations were also recorded with an underwater video camera. Our data indicate that Sargassum provides a substantial nursery habitat for many juvenile fishes off the U.S. southeast coast.
Resumo:
Long-term time series of zooplankton data provide invaluable information about the fluctuations of species abundance and the stability of marine community structure. These data have demonstrated that environmental variability have a profound effect on zooplankton communities across the Atlantic basin (Beaugrand et al., 2002; Frank et al., 2005; Pershing et al., 2005). The value of these time series increases as they lengthen, but so does the likelihood of changes in sampling or processing methods. Sam-pling zooplankton with nylon nets is highly selective and biased because of mesh selectivity, net avoidance, and damage to fragile organisms. One sampling parameter that must be standardized and closely monitored is the speed of the net through the water column. Tow speed should be as fast as possible to minimize net avoid-ance by the organisms, but not so fast as to damage soft bodied zooplankters or extrude them through the mesh (Tranter et al., 1968; Anderson and Warren, 1991).
Resumo:
The ability to estimate the original size of an ingested prey item is an important step in understanding the community and population structure of piscivorous predators (Scharf et al., 1998). More specifically, knowledge of original prey size is essential for deriving important biological information, such as predator consumption rates, biomass of the prey consumed, and selectivity of a predator towards a specific size class of prey (Hansel et al., 1988; Scharf et al., 1997; Radke et al., 2000). To accurately assess the overall “top-down” pressure a predator may exert on prey community structure, prey size is crucial. However, such information is often difficult to collect in the field (Trippel and Beamish, 1987). Stomach-content analyses are the most common methods for examining the diets of piscivorous fish, but the prey items found are often thoroughly digested and sometimes unidentifiable. As a result, obtaining a direct measurement of prey items is frequently impossible.
Resumo:
Fish bioenergetics models estimate relationships between energy budgets and environmental and physiological variables. This study presents a generic rockfish (Sebastes) bioenergetics model and estimates energy consumption by northern California blue rockf ish (S. mystinus) under average (baseline) and El Niño conditions. Compared to males, female S. mystinus required more energy because they were larger and had greater reproductive costs. When El Niño conditions (warmer temperatures; lower growth, condition, and fecundity) were experienced every 3−7 years, energy consumption decreased on an individual and a per-recruit basis in relation to baseline conditions, but the decrease was minor (<4% at the individual scale, <7% at the per-recruit scale) compared to decreases in female egg production (12−19% at the individual scale, 15−23% at the per-recruit scale). When mortality in per-recruit models was increased by adding fishing, energy consumption in El Niño models grew more similar to that seen in the baseline model. However, egg production decreased significantly — an effect exacerbated by the frequency of El Niño events. Sensitivity analyses showed that energy consumption estimates were most sensitive to respiration parameters, energy density, and female fecundity, and that estimated consumption increased as parameter uncertainty increased. This model provides a means of understanding rockfish trophic ecology in the context of community structure and environmental change by synthesizing metabolic, demographic, and environmental information. Future research should focus on acquiring such information so that models like the bioenergetics model can be used to estimate the effect of climate change, community shifts, and different harvesting strategies on rockfish energy demands.
Resumo:
This is the River Teign Fisheries Survey from August 1979 by the South West Water Authority. The River Teign was sampled by electrofishing at fifteen sites and population estimates, average lengths, weights and biomass were calculated for each species present, and where possible for individual age classes of those species. Results indicated that a stable community structure existed, and little had changed from 1963. Salmonids accounted for the majority of the biomass, and within this group trout were the most abundant in the headwater, and salmon in the lower reaches. All tributaries sampled had higher densities and biomass than the main river. The results were compared with other data collected from similar surveys of other rivers in Devon by the South West Water Authority. Both the average length of each age class, and the biomass in the main River Teign appeared to be lower than in most other rivers, although in the Rivers Wray and Lemon these values were particularly high.
Resumo:
The priority management goal of the National Marine Sanctuaries Program (NMSP) is to protect marine ecosystems and biodiversity. This goal requires an understanding of broad-scale ecological relationships and linkages between marine resources and physical oceanography to support an ecosystem management approach. The Channel Islands National Marine Sanctuary (CINMS) is currently reviewing its management plan and investigating boundary expansion. A management plan study area (henceforth, Study Area) was described that extends from the current boundary north to the mainland, and extends north to Point Sal and south to Point Dume. Six additional boundary concepts were developed that vary in area and include the majority of the Study Area. The NMSP and CINMS partnered with NOAA’s National Centers for Coastal Ocean Science Biogeography Team to conduct a biogeographic assessment to characterize marine resources and oceanographic patterns within and adjacent to the sanctuary. This assessment includes a suite of quantitative spatial and statistical analyses that characterize biological and oceanographic patterns in the marine region from Point Sal to the U.S.-Mexico border. These data were analyzed using an index which evaluates an ecological “cost-benefit” within the proposed boundary concepts and the Study Area. The sanctuary resides in a dynamic setting where two oceanographic regimes meet. Cold northern waters mix with warm southern waters around the Channel Islands creating an area of transition that strongly influences the regions oceanography. In turn, these processes drive the biological distributions within the region. This assessment analyzes bathymetry, benthic substrate, bathymetric life-zones, sea surface temperature, primary production, currents, submerged aquatic vegetation, and kelp in the context of broad-scale patterns and relative to the proposed boundary concepts and the Study Area. Boundary cost-benefit results for these parameters were variable due to their dynamic nature; however, when analyzed in composite the Study Area and Boundary Concept 2 were considered the most favorable. Biological data were collected from numerous resource agencies and university scientists for this assessment. Fish and invertebrate trawl data were used to characterize community structure. Habitat suitability models were developed for 15 species of macroinvertebrates and 11 species of fish that have significant ecological, commercial, or recreational importance in the region and general patterns of ichthyoplankton distribution are described. Six surveys of ship and plane at-sea surveys were used to model marine bird diversity from Point Arena to the U.S.-Mexico border. Additional surveys were utilized to estimate density and colony counts for nine bird species. Critical habitat for western snowy plover and the location of California least tern breeding pairs were also analyzed. At-sea surveys were also used to describe the distribution of 14 species of cetaceans and five species of pinnipeds. Boundary concept cost-benefit indices revealed that Boundary Concept 2 and the Study Area were most favorable for the majority of the species-specific analyses. Boundary Concept 3 was most favorable for bird diversity across the region. Inadequate spatial resolution for fish and invertebrate community data and incompatible sampling effort information for bird and mammal data precluded boundary cost-benefit analysis.
Resumo:
Environmental quality indicators provide resource managers with information useful to assess coastal condition and scientifically defensible decisions. Since 1984, the National Oceanic and Atmospheric Administration (NOAA), through its National Status and Trends (NS&T) Program, has provided environmental monitoring data on chemical, physical, and biological indicators of coastal environments. The program has two major monitoring components to meet its goals. The Bioeffects Assessments Program evaluates the health of bays, estuaries, and the coastal zone around the nation using the Sediment Quality Triad technique that includes measuring sediment contaminant concentrations, sediment toxicity and benthic community structure. The Mussel Watch Program is responsible for temporal coastal monitoring of contaminant concentrations by quantifying chemicals in bivalve mollusks. The NS&T Program is committed to providing the highest quality data to meet its statutory and scientific responsibilities. Data, metadata and information products are managed within the guidance protocols and standards set forth by NOAA’s Integrated Ocean Observing System (IOOS) and the National Monitoring Network, as recommended by the 2004 Ocean Action Plan. Thus, to meet these data requirements, quality assurance protocols have been an integral part of the NS&T Program since its inception. Documentation of sampling and analytical methods is an essential part of quality assurance practices. A step-by–step summary of the Bioeffects Program’s field standard operation procedures (SOP) are presented in this manual.
Resumo:
This report examines the marine biogeography of the Samoan Archipelago (~14º S latitude along the international date-line) with a focus on regional ocean climate, connectivity among islands due to larval transport, distributions of reef fish and coral communities, and the extent of existing marine protected areas. Management decisions and prior assessments in the archipelago have typically been split along the international political boundary between the islands of Samoa and those of American Samoa despite their close proximity and shared resources. A key goal in this assessment was to compile data from both jurisdictions and to conduct the characterization across the entire archipelago. The report builds upon earlier assessments by re-analyzing and interpreting many pre-existing datasets, adding more recent biogeographic data sources, and by combining earlier findings into a multidisciplinary summary of marine biogeography. The assessment is divided into 5 chapters and supporting appendices. Each chapter was written and reviewed in collaboration with subject matter specialists and local experts. In Chapter 1, a short introduction to the overall scope and approach of the report is provided. In Chapter 2, regional ocean climate is characterized using remote sensing datasets and discussed in the context of local observations. In Chapter 3, regional ocean currents and transport of coral and fish larvae are investigated among the islands of the archipelago and surrounding island nations. In Chapter 4, distinct reef fish and coral communities across the archipelago are quantified on the basis of overall biodiversity, abundance, and community structure. In Chapter 5, the existing network of MPAs in American Samoa is evaluated based on the habitats, reef fish, and coral communities that are encompassed. Appendices provide analytical details omitted from some chapters for brevity as well as supplemental datasets needed as inputs for the main chapters in the assessment. Appendices include an inventory of regional seamounts, a description of shore to shelf edge benthic maps produced for Tutuila, analytical details of reef fish and coral datasets, and supplemental information on the many marine protected areas in American Samoa.
Resumo:
This cruise report is a summary of a field survey conducted along a portion of the U.S. continental shelf in northwestern Gulf of Mexico (GOM), at navigable depths along the coastline seaward to the shelf break (~100m) from about 89°30' W to 95°28' W longitude, August 8 – 16, 2011 on NOAA Ship Nancy Foster Cruise NF-11-07-RACOW. Synoptic sampling of multiple ecological indicators was conducted at each of 34 stations throughout these waters using a random probabilistic sampling design. The original study design consisted of 50 stations extending from the Mississippi delta all the way to the U.S./Mexican border, but vessel failures precluded sampling at 16 stations within the western-most portion of the study area. At each station samples were collected for the analysis of benthic community structure and composition; concentrations of chemical contaminants in sediments and target demersal biota; sediment toxicity; nutrient and chlorophyll levels in the water column; and other basic habitat characteristics such as salinity, temperature, dissolved oxygen, turbidity, pH, sediment grain size, and organic carbon content. Other indicators, from a human-dimension perspective, were also recorded, including presence of vessels, oil rigs, surface trash, visual oil sheens in sediments or water, marine mammals, or noxious/oily sediment odors. The overall purpose of the survey was to collect data to assess the status of ecosystem condition and potential stressor impacts throughout the region, based on these various indicators and corresponding management thresholds, and to provide this information as a baseline for determining how such conditions may be changing with time. While sample analysis is still ongoing, some preliminary results and observations are reported here. A final report will be completed once all data have been processed.
Resumo:
Since 1999, NOAA’s Center for Coastal Monitoring and Assessment, Biogeography Branch (CCMA-BB) has been working with federal and territorial partners to characterize monitor and assess the status of the marine environment in southwestern Puerto Rico. This effort is part of the broader NOAA Coral Reef Conservation Program’s (CRCP) National Coral Reef Ecosystem Monitoring Program (NCREMP). With support from CRCP’s NCREMP, CCMA conducts the “Caribbean Coral Reef Ecosystem Monitoring project” (CREM) with goals to: (1) spatially characterize and monitor the distribution, abundance and size of marine fauna associated with shallow water coral reef seascapes (mosaics of coral reefs, seagrasses, sand and mangroves); (2) relate this information to in situ fine-scale habitat data and the spatial distribution and diversity of habitat types using benthic habitat maps; (3) use this information to establish the knowledge base necessary for enacting management decisions in a spatial setting; (4) establish the efficacy of those management decisions; and (5) develop data collection and data management protocols. The monitoring effort of the La Parguera region in southwestern Puerto Rico was conducted through partnerships with the University of Puerto Rico (UPR) and the Puerto Rico Department of Natural and Environmental Resources (DNER). Project funding was primarily provided by NOAA CRCP and CCMA. In recent decades, scientific and non-scientific observations have indicated that the structure and function of the coral reef ecosystem in the La Parguera region have been adversely impacted by a wide range of environmental stressors. The major stressors have included the mass Diadema die off in the early 1980s, a suite of hurricanes, overfishing, mass mortality of Acropora corals due to disease and several coral bleaching events, with the most severe mass bleaching episode in 2005. The area is also an important recreational resource supporting boating, snorkeling, diving and other water based activities. With so many potential threats to the marine ecosystem several activities are underway or have been implemented to manage the marine resources. These efforts have been supported by the CREM project by identifying marine fauna and their spatial distributions and temporal dynamics. This provides ecologically meaningful data to assess ecosystem condition, support decision making in spatial planning (including the evaluation of efficacy of current management strategies) and determine future information needs. The ultimate goal of the work is to better understand the coral reef ecosystems and to provide information toward protecting and enhancing coral reef ecosystems for the benefit of the system itself and to sustain the many goods and services that it offers society. This Technical Memorandum contains analysis of the first seven years of fish survey data (2001-2007) and associated characterization of the benthos. The primary objectives were to quantify changes in fish species and assemblage diversity, abundance, biomass and size structure and to provide spatially explicit information on the distribution of key species or groups of species and to compare community structure across the seascape including fringing mangroves, inner, middle, and outer reef areas, and open ocean shelf bank areas.