82 resultados para Los Angeles (Calif.). Dept. of Water and Power
Resumo:
When dissolved in water, compounds of nitrogen and phosphorus ought to contain the basic assimilated food requirements for autotrophic plants and therefore autotrophic algae. This article summarises the occurrence of nitrogen in water, how species of algae utilize nitrogen and phosphorus forms for growth and the capacities of algae to adapt to environments of different nutrient wealth. This topic has unquestionable importance not only for the purpose of survival of a species but also in deciding indirectly about the stability of ecosystems.
Resumo:
When salmonid redds are disrupted by spates, the displaced eggs will drift downstream. The mean distance of travel, the types of locations in which the eggs resettle and the depth of reburial of displaced eggs are not known. Investigation of these topics under field conditions presents considerable practical problems, though the use of artificial eggs might help to overcome some of them. Attempts to assess the similarities and/or differences in performance between real and artificial eggs are essential before artificial eggs can validly be used to simulate real eggs. The present report first compares the two types of egg in terms of their measurable physical characteristics (e.g. dimensions and density). The rate at which eggs fall in still water will relate to the rate at which they are likely to resettle in flowing water in the field. As the rate of fall will be influenced by a number of additional factors (e.g. shape and surface texture) which are not easily measured directly, the rates of fall of the two types of egg have been compared directly under controlled conditions. Finally, comparisons of the pattern of settlement of the two types of egg in flowing water in an experimental channel have been made. Although the work was primarily aimed at testing the value of artificial eggs as a simulation of real eggs, several side issues more directly concerned with the properties of real eggs and the likely distance of drift in natural streams have also been explored. This is the first of three reports made on this topic by the author in 1984.
Resumo:
A review article which discusses the ecology and management of common water plants in lowland streams, with an introduction containing a review of previous studies on the subject. The article covers the significance of seasonal growth, the significance of stand structure (particularly in relation to hydraulic resistence), an assessment of current river management, improvements to plant management techniques (in relation to cutting), and alternatives to the traditional techniques of river plant management. There are a number of accompanying figures.
Resumo:
A study of the geochemical cycling of iron and manganese in a seasonally stratified lake, Esthwaite water is described. This work is based on speculative ideas on environmental redox chemistry of iron which were proposed by C.H. Mortimer in the 1940's. These observations have been verified and some speculations confirmed, along with a new understanding of the manganese cycle, and detailed information on the particulate forms of both iron and manganese. Details on the mechanisms and transformations of iron have also emerged.
The significance of sedimentation and sediments to phytoplankton growth in drinking-water reservoirs
Resumo:
In the mesotrophic-eutrophic Saidenbach Reservoir in Saxony, the nanoplankton and cyanobacteria have increased at the expense of diatom dominance, due to a doubling of the external phosphorus load in the last 15 years. However, the phosphorus sedimentation flux is still very high (up to 80% of the input), corresponding to more than 2 g m2 d-1 in terms of dry weight. There is a strong correlation between the abundance of diatoms in the euphotic zone and their sedimentation flux (with a delay of about 2 weeks). Only about 25% of the deposited material could be clearly attributed to plankton biomass; the remainder resulted from flocculation and precipitation processes or directly from the inflow of clay minerals. The ash content of the deposited material was high (73%). Thus the sedimentation flux can be considered to operate as an internal water-treatment/oligotrophication process within the lake. The neighbouring Neunzehnhain Reservoir still has a very clear water with a transparency up to 18 m depth. Though the sediment was not much lower than Saidenbach sediment in total phosphorus and total numbers of bacteria, sulphide was always absent and the ratio of Fe 2+ to Fe 3+ was very low in the upper (0- 5 cm) layer. Thus the external and internal phosphorus loads do not attain the critical level necessary to induce a ”phosphorus - phytoplankton” feedback loop.
Resumo:
Esthwaite Water is the most productive or eutrophic lake in the English Lake District. Since 1945 its water quality has been determined from weekly or biweekly measurements of temperature, oxygen, plant nutrients and phytoplankton abundance. The lake receives phosphorus from its largely lowland-pasture catchment, sewage effluent from the villages of Hawkshead and Near Sawrey, and from a cage-culture fish farm. From 1986 phosphorus has been removed from the sewage effluent of Hawkshead which was considered to contribute between 47% and 67% of the total phosphorus loading to the lake. At the commencement of phosphorus removal regular measurements of phosphorus in the superficial 0-4 cm layer of lake sediment were made from cores collected at random sites. Since 1986 the mean annual concentration of alkali-extractable sediment phosphorus has decreased by 23%. This change is not significant at the 5% level but nearly so. There has been no marked change in water quality over this period. Summer dominance of blue-green algae which arose in the early 1980s after decline of the previous summer forms, Ceratium spp., has been maintained. Improvement in water quality is unlikely to be achieved at the present phosphorus loading.
Resumo:
The study of metallothioneins (MTs) has greatly improved our understanding of body burdens, metal storage and detoxification in aquatic organisms subjected to contamination by the toxic heavy metals, Cd, Cu, Hg and Zn. These studies have shown that in certain organisms MT status can be used to assess impact of these metals at the cellular level and, whilst validation is currently limited to a few examples, this stress response may be linked to higher levels of organisation, thus indicating its potential for environmental quality assessment. Molluscs, such as Mytilus spp., and several commonly occurring teleost species, are the most promising of the indicator species tested. Natural variability of MT levels caused by the organism's size, condition, age, position in the sexual cycle, temperature and various stressors, can lead to difficulties in interpretation of field data as a definitive response-indicator of metal contamination unless a critical appraisal of these variables is available. From laboratory and field studies these data are almost complete for teleost fish. Whilst for molluscs much of this information is lacking, when suitable controls are utilised and MT measurements are combined with observations of metal partitioning, current studies indicate that they are nevertheless a powerful tool in the interpretation of impact, and may prove useful in water quality assessment.
Resumo:
The advent of molecular biology has had a dramatic impact on all aspects of biology, not least applied microbial ecology. Microbiological testing of water has traditionally depended largely on culture techniques. Growing understanding that only a small proportion of microbial species are culturable, and that many microorganisms may attain a viable but non-culturable state, has promoted the development of novel approaches to monitoring pathogens in the environment. This has been paralleled by an increased awareness of the surprising genetic diversity of natural microbial populations. By targeting gene sequences that are specific for particular microorganisms, for example genes that encode diagnostic enzymes, or species-specific domains of conserved genes such as 16S ribosomal RNA coding sequences (rrn genes), the problems of culture can be avoided. Technical developments, notably in the area of in vitro amplification of DNA using the polymerase chain reaction (PCR), now permit routine detection and identification of specific microorganisms, even when present in very low numbers. Although the techniques of molecular biology have provided some very powerful tools for environmental microbiology, it should not be forgotten that these have their own drawbacks and biases in sampling. For example, molecular techniques are dependent on efficient lysis and recovery of nucleic acids from both vegetative forms and spores of microbial species that may differ radically when growing in the laboratory compared with the natural environment. Furthermore, PCR amplification can introduce its own bias depending on the nature of the oligonucleotide primers utilised. However, despite these potential caveats, it seems likely that a molecular biological approach, particularly with its potential for automation, will provide the mainstay of diagnostic technology for the foreseeable future.
Resumo:
Whilst current methods for the isolation and enumeration of Cryptosporidium spp. oocysts in water have provided some insight into their occurrence and significance, they are regarded as being inefficient, variable and time-consuming, with much of the interpretation being left to the expertise of the analyst. Two expectations of novel developments are to reduce the variability and subjectivity associated with the isolation and identification of oocysts. Flocculation, immunomagnetisable and flow cytometric techniques, for concentrating oocysts from water samples, should prove more reliable than current methods, whilst the development of more avid and specific monoclonal antibodies in conjunction with the use of nuclear fluorochromes will aid identification. Further insight into the viability, taxonomy, species identification, infectivity and virulence of the parasite should be forthcoming through the use of techniques such as the polymerase chain reaction, in situ hybridisation and non-uniform alternating current electrical fields. Such information is necessary in order to enable microbiologists, epidemiologists, engineers, utility operators and regulators to assess the safety of a water supply, with respect to Cryptosporidium contamination, more effectively.
Resumo:
A decade-long time series recorded in southern Monterey Bay, California demonstrates that the shallow, near-shore environment (17 m depth) is regularly inundated with pulses of cold, hypoxic and low pH water. During these episodes, oxygen can drop to biologically threatening levels, and pH levels were lower than expected. Weekly water chemistry monitoring revealed that the saturation state of aragonite (the more soluble form of calcium carbonate) was often below saturation and had a moderate positive relationship with pH, however, analytical and human error could be high. Pulses of hypoxia and low pH water with the greatest intensity arise at the onset of the spring upwelling season, and fluctuations are strongly semidurnal (tidal) and diurnal. Arrival of cold, hypoxic water on the inner shelf typically occurs 3 days after the arrival of a strong upwelling event and appears to be driven by upwelling modulated by internal tidal fluctuations. I found no relationship between the timing of low-oxygen events and the diel solar cycle nor with terrestrial nutrient input. These observations are consistent with advection of hypoxic water from the deep, offshore environment where water masses experience a general decline of temperature, oxygen and pH with depth, and inconsistent with biochemical forcing. Comparisons with concurrent temperature and oxygen time series taken ~20 km away at the head of the Monterey Canyon show similar patterns but even more intense hypoxic events due to stronger semidiurnal forcing there. Analysis of the durations of exposure to low oxygen levels establishes a framework for assessing the ecological relevance of these events. Increasing oceanic hypoxia and acidification of both surface and deep waters may increase the number, intensity, duration and spatial extent of future intrusions along the Pacific coast. Evaluation of the resiliency of nearshore ecosystems such as kelp forests, rocky reefs and sandy habitats, will require consideration of these events.
Resumo:
The following brief is to ensure standard criteria and format are used for the scoping and environmental assessment of water resources projects leading to the production of an environmental report or Environmental Statement. This volume is one of a series giving guidance on water resources projects. The water resources projects will predominantly comprise drought orders and permits, time limited and permanent licences. Smaller projects, such as spray irrigation licences, will not require an environmental assessment. This document forms the basis for discussions between the Environment Agency North East Region, consultees and the applicant. The process aims to produce a thorough assessment. Each section addresses consecutive elements of the assessment process. Section 2 outlines the structure for a scoping document, section 3 outlines the structure for an Environmental Statement and section 4 gives guidance on the role of an Environmental Action Plan. Appendices 1 and 2 should be used in conjunction with the scoping process and cover a wide range of aspects. However, some projects may not require all of them to be included, whilst for others, the inclusion of additional factors may be appropriate.
Resumo:
In its role as protector of the water environment, the Environment Agency requires significant water resources abstraction applications and schemes such as drought orders, drought permits, time limited licences, and river transfers to be environmentally assessed leading to the production of an environmental report or statement. This may not take the form of a formal Environmental Assessment, but is required to provide environmental information to support applications. (See Volume 1 - Guidance for Scoping and Environmental Assessment for Water Resources Projects in North East Region). This second volume concentrates on the environmental monitoring component of environmental assessments.
Resumo:
The recent development of the pop-up satellite archival tag (PSAT) has allowed the collection of information on a tagged animal, such as geolocation, pressure (depth), and ambient water temperature. The success of early studies, where PSATs were used on pelagic fishes, has spurred increasing interest in the use of these tags on a large variety of species and age groups. However, some species and age groups may not be suitable candidates for carrying a PSAT because of the relatively large size of the tag and the consequent energy cost to the study animal. We examined potential energetic costs to carrying a tag for the cownose ray (Rhinoptera bonasus). Two forces act on an animal tagged with a PSAT: lift from the PSATs buoyancy and drag as the tag is moved through the water column. In a freshwater flume, a spring scale measured the total force exerted by a PSAT at flume velocities from 0.00 to 0.60 m/s. By measuring the angle of deflection of the PSAT at each velocity, we separated total force into its constituent forces — lift and drag. The power required to carry a PSAT horizontally through the water was then calculated from the drag force and velocity. Using published metabolic rates, we calculated the power for a ray of a given size to swim at a specified velocity (i.e., its swimming power). For each velocity, the power required to carry a PSAT was compared to the swimming power expressed as a percentage, %TAX (Tag Altered eXertion). A %TAX greater than 5% was felt to be energetically significant. Our analysis indicated that a ray larger than 14.8 kg can carry a PSAT without exceeding this criterion. This method of estimating swimming power can be applied to other species and would allow a researcher to decide the suitability of a given study animal for tagging with a PSAT.
Resumo:
This is the Effect of water quality on coarse fish productivity and movement in the Lower River Irwell and Upper Manchester Ship Canal: a watercourse recovering from historical pollution report produced by the Environment Agency in 2003. The aim of this study was to investigate the impact of water quality upon coarse fish population dynamics in a lowland, urban watercourse. All of the research carried was undertaken in the lower River Irwell and upper Manchester Ship Canal, between February 1998 and December 2001. Of particular interest was the natural sustainability of the urban fishery given recent concern raised in the angling community over an apparent decline in coarse fish populations in lowland rivers. The research described in this report has concentrated upon the role of water quality in determining coarse fish population dynamics, and in particular: The impact of water quality upon fish growth and productivity; The impact of poor water quality and low dissolved oxygen concentrations upon fish distribution and movement; The impact of water quality upon the sexual development of fish.