70 resultados para Lewis, John Llewellyn, 1880-1969.
Resumo:
The Inter-American Tropical Tuna Commission (lA TTC) came into existence in 1950, after its convention, signed by representatives ofCosta Rica and the United States in 1949, was ratified. It was the first international tuna organization, and only the third international fisheries organization, whose staff has had the responsibility for performing scientific research, the others being the International Pacific Halibut Commission, established in 1923, and the International Pacific Salmon Fisheries Commission, established in 1937. The current members of the IATTC are Costa Rica, Ecuador, EI Salvador, France, Guatemala, Japan, Mexico, Nicaragua, Panama, the United States, Vanuatu, and Venezuela. The first Director ofthe IATTC was Dr. Milner B. Schaefer, who was in that position from 1950 to 1963. He was followed by Dr. John L. Kask (1963-1969), Dr. James Joseph (1969-1999), and Dr. Robin L. Allen (1999-present). The success ofthe IATIC showed that it was possible to carry out research and management on an international, high-seas fishery successfully. Since then other international organizations for tuna management, including the International Commission for the Conservation of Atlantic Tunas (1969), the Forum Fisheries Agency (1979), the Commission for the Conservation of Southern Bluefin Tuna (1994), and the Indian Ocean Tuna Commission (1996), were established. Appropriately, the 50th anniversary celebration was held in Costa Rica, one of the two charter members of the IATTC. Persons who have held important positions in international fishery management in various parts ofthe world spoke at the celebration. Their presentations, except for that describing the Indian Ocean Tuna Commission, are reproduced in this volume.
Resumo:
The evolution of the fishery of the pink shrimp Penaeus duorarum Burkenroad is analysed from its beginning in 1969 until the end of 1970. A rapid and general decline of the yield has been evident during this period. The actual shrimp fleet seems to be too big to allow an exploitation economically convenient of the stock.
Resumo:
Graphs of variations of zooplankton biomasses expressed as ash-free dry weight (i.e. organic matter) are presented for the 1969-1979 period. The graph of the average year shows: an enrichment season from mid-July till mid-November in which the biomass is 2.3 times higher than the rest of the year and characterized by a slight decrease of the biomass in late August or early September. The warm season is divided into a period of moderate biomass from November till February, a period of moderate biomass from November till February and a period of steady decline of the biomass till the start of the upwelling at the end of June.
Resumo:
Data are reported on: (1) date and place of ringing the juveniles and adults of the sea bird of the genus Sterna in Côte d'Ivoire, and (2) date and place of recapture during the winter periods of 1969, 1970, 1971, 1972, 1973.
Resumo:
Skates (family Rajidae) are oviparous and lay tough, thick-walled eggs. At least some skate species lay their eggs in spatially restricted nursery grounds where embryos develop and hatch (Hitz, 1964; Hoff, 2007). After hatching, neonates may quickly leave the nursery grounds (Hoff, 2007). Egg densities in these small areas may be quite high. As an example, in the eastern Bering Sea, a site <2 km2 harbored eggs of Alaska skate (Bathyraja parmifera) exceeding 500,000/km2. All skate nursery grounds have been identified over soft sea floors (Lucifora and García, 2004; Hoff, 2007).
Resumo:
John Otterbein Snyder (1867–1943) was an early student of David Starr Jordan at Stanford University and subsequently rose to become an assistant professor there. During his 34 years with the university he taught a wide variety of courses in various branches of zoology and advised numerous students. He eventually mentored 8 M.A. and 4 Ph.D. students to completion at Stanford. He also assisted in the collection of tens of thousands of fish specimens from the western Pacific, central Pacific, and the West Coast of North America, part of the time while stationed as “Naturalist” aboard the U.S. Fish Commission’s Steamer Albatross (1902–06). Although his early publications dealt mainly with fish groups and descriptions (often as a junior author with Jordan), after 1910 he became more autonomous and eventually rose to become one of the Pacific salmon, Oncorhynchus spp., experts on the West Coast. Throughout his career, he was especially esteemed by colleagues as “a stimulating teacher,” “an excellent biologist,” and “a fine man.
Resumo:
John Nathan Cobb (1868–1930) became the founding Director of the College of Fisheries, University of Washington, Seattle, in 1919 without the benefit of a college education. An inquisitive and ambitious man, he began his career in the newspaper business and was introduced to commercial fisheries when he joined the U.S. Fish Commission (USFC) in 1895 as a clerk, and he was soon promoted to a “Field Agent” in the Division of Statistics, Washington, D.C. During the next 17 years, Cobb surveyed commercial fisheries from Maine to Florida, Hawaii, the Pacific Northwest, and Alaska for the USFC and its successor, the U.S. Bureau of Fisheries. In 1913, he became editor of the prominent west coast trade magazine, Pacific Fisherman, of Seattle, Wash., where he became known as a leading expert on the fisheries of the Pacific Northwest. He soon joined the campaign, led by his employer, to establish the nation’s first fisheries school at the University of Washington. After a brief interlude (1917–1918) with the Alaska Packers Association in San Francisco, Calif., he was chosen as the School’s founding director in 1919. Reflecting his experience and mindset, as well as the University’s apparent initial desire, Cobb established the College of Fisheries primarily as a training ground for those interested in applied aspects of the commercial fishing industry. Cobb attracted sufficient students, was a vigorous spokesman for the College, and had ambitions plans for expansion of the school’s faculty and facilities. He became aware that the College was not held in high esteem by his faculty colleagues or by the University administration because of the school’s failure to emphasize scholastic achievement, and he attempted to correct this deficiency. Cobb became ill with heart problems in 1929 and died on 13 January 1930. The University soon thereafter dissolved the College and dismissed all but one of its faculty. A Department of Fisheries, in the College of Science, was then established in 1930 and was led by William Francis Thompson (1888–1965), who emphasized basic science and fishery biology. The latter format continues to the present in the Department’s successor, The School of Aquatic Fisheries and Science.
Resumo:
Knowledge of the distribution and biology of the ragfish, Icosteus aenigmaticus, an aberrant deepwater perciform of the North Pacific Ocean, has increased slowly since the first description of the species in the 1880’s which was based on specimens retrieved from a fish monger’s table in San Francisco, Calif. As a historically rare, and subjectively unattractive appearing noncommercial species, ichthyologists have only studied ragfish from specimens caught and donated by fishermen or by the general public. Since 1958, I have accumulated catch records of >825 ragfish. Specimens were primarily from commercial fishermen and research personnel trawling for bottom and demersal species on the continental shelves of the eastern North Pacific Ocean, Gulf of Alaska, Bering Sea, and the western Pacific Ocean, as well as from gillnet fisheries for Pacific salmon, Oncorhynchus spp., in the north central Pacific Ocean. Available records came from four separate sources: 1) historical data based primarily on published and unpublished literature (1876–1990), 2) ragfish delivered fresh to Humboldt State University or records available from the California Department of Fish and Game of ragfish caught in northern California and southern Oregon bottom trawl fisheries (1950–99), 3) incidental catches of ragfish observed and recorded by scientific observers of the commercial fisheries of the eastern Pacific Ocean and catches in National Marine Fisheries Service trawl surveys studying these fisheries from 1976 to 1999, and 4) Japanese government research on nearshore fisheries of the northwestern Pacific Ocean (1950–99). Limited data on individual ragfish allowed mainly qualitative analysis, although some quantitative analysis could be made with ragfish data from northern California and southern Oregon. This paper includes a history of taxonomic and common names of the ragfish, types of fishing gear and other techniques recovering ragfish, a chronology of range extensions into the North Pacific and Bering Sea, reproductive biology of ragfish caught by trawl fisheries off northern California and southern Oregon, and topics dealing with early, juvenile, and adult life history, including age and growth, food habits, and ecology. Recommendations for future study are proposed, especially on the life history of juvenile ragfish (5–30 cm FL) which remains enigmatic.
Resumo:
Aboriginal Australians consumed oysters before settlement by Europeans as shown by the large number of kitchen middens along Australia's coast. Flat oysters, Ostrea angasi, were consumed in southeastern Australia, whereas both flat and Sydney rock oysters, Saccostrea glomerata, are found in kitchen middens in southern New South Wales (NSW), but only Sydney rock oysters are found in northern NSW and southern Queensland. Oyster fisheries began with the exploitation of dredge beds, for the use of oyster shell for lime production and oyster meat for consumption. These natural oyster beds were nealy all exhausted by the late 1800's, and they have not recovered. Oyster farming, one of the oldest aquaculture industries in Australia, began as the oyster fisheries declined in the late 1800's. Early attempts at farming flat oysters in Tasmania, Victoria, and South Australia, which started in the 1880's, were abandoned in the 1890's. However, a thriving Sydney rock oyster industry developed from primitive beginnings in NSW in the 1870's. Sydney rock oysters are farmed in NSW, southern Queensland, and at Albany, Western Australia (WA). Pacific oysters, Crassostrea gigas, are produced in Tasmania, South Australia, and Port Stephens, NSW. FLant oysters currently are farmed only in NSW, and there is also some small-scale harvesting of tropical species, the coarl rock or milky oyster, S. cucullata, and th black-lip oyster, Striostrea mytiloides, in northern Queensland. Despite intra- and interstate rivalries, oyster farmers are gradually realizing that they are all part of one industry, and this is reflected by the establishment of the national Australian Shellfish Quality Assuarance Program and the transfer of farming technology between states. Australia's oyster harvests have remained relatively stable since Sydney rock oyster production peaked in the mid 1970's at 13 million dozen. By the end of the 1990's this had stabilized at around 8 million dozen, and Pacific oyster production reached a total of 6.5 million dozen from Tasmania, South Australia, and Port Stephens, a total of 14.5 million dozen oysters for the whole country. This small increase in production during a time of substantial human population growth shows a smaller per capita consumption and a declining use of oysters as a "side-dish."
Resumo:
The United States' increasing competitive advantage in international seafood trade in Alaska walleye pollock. Theragra chalcogramma, has contributed to higher prices for surimi-based goods and structural changes in seafood production and trade in Japan. The objectives of this analytical investigation include: 1) Evaluation of the role reversal of Japan and the United States in international seafood trade and 2) quantification of the impact of rising prices of frozen surimi on household consumption of surimi-based foods in Japan. This study documents Japan's regression from "seafood self-sufficiency" to increasing dependence on imported products and raw materials. In particular, Japan's growing dependence on American fishermen and seafood producers is described. Surimi production by the United States, and its emerging dominance over Japanese sources of supply, are especially significant. Results of the analysis suggest that Japanese consumer demand for surimi-based food stuffs correlates directly with "competitive" food prices, e.g., pork, chicken, and beef, and inversely with personal income. Also revealed is how rising household income and relative price shifts among competing animal protein sources in the Japanese diet have contributed to declining household consumption of surimi-based foods, specifically, and a shift away from seafoods in favor of beef, in general. The linkages between, for example. Japanese domestic seafood production and consumption, international trade in marine products, and resource management decisions in the U.S. EEZ present a picture of a changing global marketplace. Increasingly, actions in one arena will have perhaps profound implications in the others.
Resumo:
This is the fourth Annual report of the Cumberland River Authority on information of its activities and responsibilities on river management in its area between the beginning of April 1968, to the end of March 1969. The report contains 5 main sections on water resources, land drainage, fisheries, pollution, and finally the expenditure and income for the 12 month period. The first area that the report deals with is water resources, which includes periodical surveys, hydrometric schemes, acceptable flows, conservation works and a review of rainfall and river flow. The section on land drainage looks at work on improvement schemes, floods, charges and information on maintenance work carried out on rivers including Wampool, Waver, Marron, Ellen, Eden, Caldew, Esk, Annas, Irt and Glenderamackin. The fisheries section covers 5 districts of the River Eden, Esk, Ellen, Derwent and South West Cumberland. It includes angling information and a general report for salmon and sea trout, Brown trout and freshwater fish. Fish disease and fish hatchery are also covered as well as fisheries protection and licence duties. The fourth section on pollution covers water quality, and the results of samples taken from rivers Eden, Eamont, Petteril, Caldew, Calder, Derwent, Ehen, Ellen, Wampool and Waver are also given. It also covers information on sewage and trade effluents. The River Authorities preceded the Environment Agency which came into existence in 1996.
Resumo:
This is the second River Dart Fisheries Survey produced by the Devon River Authority; which was carried out from April to July, 1969. The objective was to examine the distribution and relative abundance of salmonid fish in the River Dart, in order to assess the possibility or desirability, of increasing salmon smolt production of the river by artificial propagation or other means. In addition to the tributaries examined in the 1965 survey, further sections were studied on the River Hems and Holy Brook and reference should be made to the River Survey Report, 1965 for introductory information. The method includes the choice of sections and sampling techniques. The results go through the number/type/class of fishes counted while the survey took place and distribution patterns within the different transects/brooks. The discussion tries to remark the importance of understanding the differences between 1965 and 1969 surveys. The Appendix contains tables with totals of salmonid fish found and distribution sizes for each section, population density tables and a map with new surveyed sections.