505 resultados para Lake restoration.
Resumo:
Health advisories are now posted in northern Florida Bay, adjacent to the Everglades, warning of high mercury concentrations in some species of gamefish. Highest concentrations of mercury in both forage fish and gamefish have been measured in the northeastern corner of Florida Bay, adjacent to the dominant freshwater inflows from the Everglades. Thirty percent of spotted seatrout (Cynoscion nebulosus Cuvier, 1830) analyzed exceeded Florida’s no consumption level of 1.5 μg g−1 mercury in this area. We hypothesized that freshwater draining the Everglades served as the major source of methylmercury entering the food web supporting gamefish. A lack of correlation between mercury concentrations and salinity did not support this hypothesis, although enhanced bioavailability of methylmercury is possible as freshwater is diluted with estuarine water. Stable isotopes of carbon, nitrogen, and sulfur were measured in fish to elucidate the shared pathways of methylmercury and nutrient elements through the food web. These data support a benthic source of both methylmercury and nutrient elements to gamefish within the eastern bay, as opposed to a dominant watershed source. Ecological characteristics of the eastern bay, including active redox cycling in near-surface sediments without excessive sulfide production are hypothesized to promote methylmercury formation and bioaccumulation in the benthos. Methylmercury may then accumulate in gamefish through a food web supported by benthic microalgae, detritus, pink shrimp (Farfantepenaeus duorarum Burkenroad, 1939), and other epibenthic feeders. Uncertainty remains as to the relative importance of watershed imports of methylmercury from the Everglades and in situ production in the bay, an uncertainty that needs resolution if the effects of Everglades restoration on mercury levels in fish are to be modeled and managed.
Resumo:
The toxicity of sediments in Sabine Lake, Texas, and adjoining Intracoastal Waterway canals was determined as part of bioeffects assessment studies managed by NOAA’s National Status and Trends Program. The objectives of the survey were to determine: (1) the incidence and degree of toxicity of sediments throughout the study area; (2) the spatial patterns (or gradients) in chemical contamination and toxicity, if any, throughout the study area; (3) the spatial extent of chemical contamination and toxicity; and (4) the statistical relationships between measures of toxicity and concentrations of chemicals in the sediments. Surficial sediment samples were collected during August, 1995 from 66 randomly-chosen locations. Laboratory toxicity tests were performed as indicators of potential ecotoxicological effects in sediments. A battery of tests was performed to generate information from different phases (components) of the sediments. Tests were selected to represent a range in toxicological endpoints from acute to chronic sublethal responses. Toxicological tests were conducted to measure: reduced survival of adult amphipods exposed to solid-phase sediments; impaired fertilization success and abnormal morphological development in gametes and embryos, respectively, of sea urchins exposed to pore waters; reduced metabolic activity of a marine bioluminescent bacteria exposed to organic solvent extracts; and induction of a cytochrome P-450 reporter gene system in exposures to solvent extracts of the sediments. Chemical analyses were performed on portions of each sample to quantify the concentrations of trace metals, polynuclear aromatic hydrocarbons, and chlorinated organic compounds. Correlation analyses were conducted to determine the relationships between measures of toxicity and concentrations of potentially toxic substances in the samples. Based upon the compilation of results from chemical analyses and toxicity tests, the quality of sediments in Sabine Lake and vicinity did not appear to be severely degraded. Chemical concentrations rarely exceeded effects-based numerical guidelines, suggesting that toxicant-induced effects would not be expected in most areas. None of the samples was highly toxic in acute amphipod survival tests and a minority (23%) of samples were highly toxic in sublethal urchin fertilization tests. Although toxic responses occurred frequently (94% of samples) in urchin embryo development tests performed with 100% pore waters, toxicity diminished markedly in tests done with diluted pore waters. Microbial bioluminescent activity was not reduced to a great degree (no EC50 <0.06 mg/ml) and cytochrome P-450 activity was not highly induced (6 samples exceeded 37.1 ug/g benzo[a]pyrene equivalents) in tests done with organic solvent extracts. Urchin embryological development was highly correlated with concentrations of ammonia and many trace metals. Cytochrome P450 induction was highly correlated with concentrations of a number of classes of organic compounds (including the polynuclear aromatic hydrocarbons and chlorinated compounds). (PDF contains 51 pages)
Resumo:
Executive Summary: The Estuary Restoration Act of 2000 (ERA), Title I of the Estuaries and Clean Waters Act of 2000, was created to promote the restoration of habitats along the coast of the United States (including the US protectorates and the Great Lakes). The NOAA National Centers for Coastal Ocean Science was charged with the development of a guidance manual for monitoring plans under this Act. This guidance manual, titled Science-Based Restoration Monitoring of Coastal Habitats, is written in two volumes. It provides technical assistance, outlines necessary steps, and provides useful tools for the development and implementation of sound scientific monitoring of coastal restoration efforts. In addition, this manual offers a means to detect early warnings that the restoration is on track or not, to gauge how well a restoration site is functioning, to coordinate projects and efforts for consistent and successful restoration, and to evaluate the ecological health of specific coastal habitats both before and after project completion (Galatowitsch et al. 1998). The following habitats have been selected for discussion in this manual: water column, rock bottom, coral reefs, oyster reefs, soft bottom, kelp and other macroalgae, rocky shoreline, soft shoreline, submerged aquatic vegetation, marshes, mangrove swamps, deepwater swamps, and riverine forests. The classification of habitats used in this document is generally based on that of Cowardin et al. (1979) in their Classification of Wetlands and Deepwater Habitats of the United States, as called for in the ERA Estuary Habitat Restoration Strategy. This manual is not intended to be a restoration monitoring “cookbook” that provides templates of monitoring plans for specific habitats. The interdependence of a large number of site-specific factors causes habitat types to vary in physical and biological structure within and between regions and geographic locations (Kusler and Kentula 1990). Monitoring approaches used should be tailored to these differences. However, even with the diversity of habitats that may need to be restored and the extreme geographic range across which these habitats occur, there are consistent principles and approaches that form a common basis for effective monitoring. Volume One, titled A Framework for Monitoring Plans under the Estuaries and Clean Waters Act of 2000, begins with definitions and background information. Topics such as restoration, restoration monitoring, estuaries, and the role of socioeconomics in restoration are discussed. In addition, the habitats selected for discussion in this manual are briefly described. (PDF contains 116 pages)
Resumo:
Healthy coastal habitats are not only important ecologically; they also support healthy coastal communities and improve the quality of people’s lives. Despite their many benefits and values, coastal habitats have been systematically modified, degraded, and destroyed throughout the United States and its protectorates beginning with European colonization in the 1600’s (Dahl 1990). As a result, many coastal habitats around the United States are in desperate need of restoration. The monitoring of restoration projects, the focus of this document, is necessary to ensure that restoration efforts are successful, to further the science, and to increase the efficiency of future restoration efforts.
Resumo:
This document presents the results of the first three monitoring events to track the recovery of a repaired coral reef injured by the M/V Elpis vessel grounding incident of November 11, 1989. This grounding occurred within the boundaries of what at the time was designated the Key Largo National Marine Sanctuary (NMS), now designated the Key Largo NMS Existing Management Area within the Florida Keys National Marine Sanctuary (FKNMS). Pursuant to the National Marine Sanctuaries Act (NMSA) 16 U.S.C. 1431 et seq., and the Florida Keys National Marine Sanctuary and Protection Act (FKNMSPA) of 1990, NOAA is the federal trustee for the natural and cultural resources of the FKNMS. Under Section 312 of the NMSA, NOAA has the authority to recover monetary damages for injury, destruction, or loss of Sanctuary resources, and to use the recovered monies to restore injured or lost sanctuary resources within the FKNMS. The restoration monitoring program tracks patterns of biological recovery, determines the success of restoration measures, and assesses the resiliency to environmental and anthropogenic disturbances of the site over time. To evaluate restoration success, reference habitats adjacent to the restoration site are concurrently monitored to compare the condition of restored reef areas with natural coral reef areas unimpacted by the vessel grounding. Restoration of the site was completed September 1995, and thus far three monitoring events have occurred; one in the summer of 2004, one in the summer of 2005, and the latest in the summer of 2007. The monitoring in 2004 was in the nature of a “pilot project,” or proof of concept. Only the quantitative results of the 2005 and 2007 monitoring are presented and discussed. Monitoring has consisted of assessment of the structural stability of limestone boulders used in the restoration and comparison of the coral communities on the boulders and reference areas. Corals are divided into Gorgonians, Milleporans, and Scleractinians. Coral densities at the Restored and Reference areas for the 2005 and 2007 events are compared, and it is shown that the densities of all taxa in the Restored area are greater by 2007, though not significantly so. For the Scleractinians, number and percentage of colonies by species, as well as several common biodiversity indices are provided. The greater biodiversity of the Restored area is evidenced. Also, size-class frequency distributions for Agaricia spp. (Scleractinia) are presented. These demonstrate the approaching convergence of the Restored and Reference areas in this regard. An inter-annual comparison of densities, within both areas, for all three Orders, is presented. The most noteworthy finding was the relative consistency across time for all taxa in each area. Finally, certain anomalies regarding species settlement patterns are presented. (PDF contains 48 pages.)
Resumo:
Without knowledge of basic seafloor characteristics, the ability to address any number of critical marine and/or coastal management issues is diminished. For example, management and conservation of essential fish habitat (EFH), a requirement mandated by federally guided fishery management plans (FMPs), requires among other things a description of habitats for federally managed species. Although the list of attributes important to habitat are numerous, the ability to efficiently and effectively describe many, and especially at the scales required, does not exist with the tools currently available. However, several characteristics of seafloor morphology are readily obtainable at multiple scales and can serve as useful descriptors of habitat. Recent advancements in acoustic technology, such as multibeam echosounding (MBES), can provide remote indication of surficial sediment properties such as texture, hardness, or roughness, and further permit highly detailed renderings of seafloor morphology. With acoustic-based surveys providing a relatively efficient method for data acquisition, there exists a need for efficient and reproducible automated segmentation routines to process the data. Using MBES data collected by the Olympic Coast National Marine Sanctuary (OCNMS), and through a contracted seafloor survey, we expanded on the techniques of Cutter et al. (2003) to describe an objective repeatable process that uses parameterized local Fourier histogram (LFH) texture features to automate segmentation of surficial sediments from acoustic imagery using a maximum likelihood decision rule. Sonar signatures and classification performance were evaluated using video imagery obtained from a towed camera sled. Segmented raster images were converted to polygon features and attributed using a hierarchical deep-water marine benthic classification scheme (Greene et al. 1999) for use in a geographical information system (GIS). (PDF contains 41 pages.)
Resumo:
This document presents the results of the first two monitoring events to track the recovery of a repaired coral reef injured by the M/V Wellwood vessel grounding incident of August 4, 1984. This grounding occurred within the boundaries of what at the time was designated the Key Largo National Marine Sanctuary (NMS), now designated the Key Largo NMS Existing Management Area within the Florida Keys National Marine Sanctuary (FKNMS). Pursuant to the National Marine Sanctuaries Act (NMSA) 16 U.S.C. 1431 et seq., and the Florida Keys National Marine Sanctuary and Protection Act (FKNMSPA) of 1990, NOAA is the federal trustee for the natural and cultural resources of the FKNMS. Under Section 312 of the NMSA, NOAA has the authority to recover monetary damages for injury, destruction, or loss of Sanctuary resources, and to use the recovered monies to restore injured or lost sanctuary resources within the FKNMS. The restoration monitoring program tracks patterns of biological recovery, determines the success of restoration measures, and assesses the resiliency to environmental and anthropogenic disturbances of the site over time. To evaluate restoration success, reference habitats adjacent to the restoration site are concurrently monitored to compare the condition of restored reef areas with “natural” coral reef areas unimpacted by the vessel grounding or other injury. Restoration of the site was completed on July 22, 2002, and thus far two monitoring events have occurred; one in the Fall of 2004, and one in the Summer/Fall of 2006. The monitoring has consisted of: assessment of the structural stability of restoration modules and comparison of the coral recruitment conditions of the modules and reference sites. Corals are divided into Gorgonians, Milleporans, and Scleractinians and (except where noted) recruits are defined as follows: Gorgonians—maximum size (height) 150 mm at first monitoring event, 270 mm at second; Milleporans—maximum size (height) 65 mm at first event, 125 mm at second; Scleractinians—maximum size (greatest diameter) 50 mm at second event (only one species was size-classed at first event, at smaller size). Recruit densities at the restored and reference areas for each event are compared, as are size-class frequency distributions. For the Scleractinians, number and percentage of recruits by species, as well as several common biodiversity indices are provided. Finally, a qualitative comparison of recruit substrate settlement preference is indicated. Generally, results indicate that restored areas are converging on reference areas, based on almost all parameters examined, with one noted exception. Further monitoring is planned and the trends are anticipated to continue; close attention will be paid to the indicated anomaly. (PDF contains 63 pages.)
Resumo:
This document presents the results of the monitoring of a repaired coral reef injured by the M/V Connected vessel grounding incident of March 27, 2001. This grounding occurred in Florida state waters within the boundaries of the Florida Keys National Marine Sanctuary (FKNMS). The National Oceanic and Atmospheric Administration (NOAA) and the Board of Trustees of the Internal Improvement Trust Fund of the State of Florida, (“State of Florida” or “state”) are the co-trustees for the natural resources within the FKNMS and, thus, are responsible for mediating the restoration of the damaged marine resources and monitoring the outcome of the restoration actions. The restoration monitoring program tracks patterns of biological recovery, determines the success of restoration measures, and assesses the resiliency to environmental and anthropogenic disturbances of the site over time. The monitoring program at the Connected site was to have included an assessment of the structural stability of installed restoration modules and biological condition of reattached corals performed on the following schedule: immediately (i.e., baseline), 1, 3, and 6 years after restoration and following a catastrophic event. Restoration of this site was completed on July 20, 2001. Due to unavoidable delays in the settlement of the case, the “baseline” monitoring event for this site occurred in July 2004. The catastrophic monitoring event occurred on August 31, 2004, some 2 ½ weeks after the passage of Hurricane Charley which passed nearby, almost directly over the Dry Tortugas. In September 2005, the year one monitoring event occurred shortly after the passage of Hurricane Katrina, some 70 km to the NW. This report presents the results of all three monitoring events. (PDF contains 37 pages.)
Resumo:
This document presents the results of the monitoring of a repaired coral reef injured by the M/V Jacquelyn L vessel grounding incident of July 7, 1991. This grounding occurred in Florida state waters within the boundaries of the Florida Keys National Marine Sanctuary (FKNMS). The National Oceanic and Atmospheric Administration (NOAA) and the Board of Trustees of the Internal Improvement Trust Fund of the State of Florida, (“State of Florida” or “state”) are the co-trustees for the natural resources within the FKNMS and, thus, are responsible for mediating the restoration of the damaged marine resources and monitoring the outcome of the restoration actions. The restoration monitoring program tracks patterns of biological recovery, determines the success of restoration measures, and assesses the resiliency to environmental and anthropogenic disturbances of the site over time. The monitoring program at the Jacquelyn L site was to have included an assessment of the structural stability of installed restoration modules and biological condition of reattached corals performed on the following schedule: immediately (i.e., baseline), 1, 3, and 6 years after restoration and following a catastrophic event. Restoration of this site was completed on July 20, 2000. Due to unavoidable delays in the settlement of the case, the “baseline” monitoring event for this site occurred in July 2004. The catastrophic monitoring event occurred on August 31, 2004, some 2 ½ weeks after the passage of Hurricane Charley which passed nearby, almost directly over the Dry Tortugas. In September 2005, the year one monitoring event occurred shortly after the passage of Hurricane Katrina, some 70 km to the NW. This report presents the results of all three monitoring events. (PDF contains 31 pages.)
Resumo:
This document presents the results of baseline monitoring of a repaired coral reef injured by the M/V Wave Walker vessel grounding incident of January 19, 2001. This grounding occurred in Florida state waters within the boundaries of the Florida Keys National Marine Sanctuary (FKNMS). The National Oceanic and Atmospheric Administration (NOAA) and the Board of Trustees of the Internal Improvement Trust Fund of the State of Florida, (“State of Florida” or “state”) are the co-trustees for the natural resources within the FKNMS. This report documents the efficacy of the restoration effort, the condition of the restored reef area two year and four months post-effort, and provides a picture of surrounding reference areas, so as to provide a basis for future comparisons by which to evaluate the long-term success of the restoration. (PDF contains 25 pages.)
Resumo:
This document is part of a series of 5 technical manuals produced by the Challenge Program Project CP34 “Improved fisheries productivity and management in tropical reservoirs”. This manual is based on the experience gained by the partners of the project “Improved Fisheries Productivity and Management in Tropical Reservoirs” (CP34) funded by the Challenge Program on Water and Food. As part of this project, the partners designed, developed and tested in the field three enclosures in Lake Nasser in Egypt. The objective of the manual is to document for practitioners the main technical lessons gained from these experiments. (Document contains 16 pages)
Resumo:
Silver King Creek, Alpine County, is the native range of the Federally-threatened Paiute cutthroat trout, Oncorhynchus clarki seleniris. Paiute cutthroat currently inhabit Coyote Valley and Corral Valley creeks, which are tributaries to Silver King Creek below Llewellyn Falls, and also Silver King Creek and tributaries aboye Llewellyn Falls. Rainbow trout, O. mykiss, were introduced into the basin during 1949 and became hybridized with Paiute cutthroat. Chemical treatments attempted by the California Department of Fish and Game (CDFG) in 1964 and 1976 failed to eliminate hybrid trout. A chemical treatment project was again conducted by the CDFG from 1991 through 1993 to eliminate hybrid trout from within the range of Paiute cutthroat. This report presents a summary of events for the first two years of the Silver King Paiute Cutthroat Trout Restoration Project; a more thorough analysis is made of the third and final year of the project. (PDF contains 39 pages.)
Resumo:
Lake Chad fisheries contributes about 13% of all fish produced by the inland and coastal states of the nation and supports a large population of fishermen and allied workers. The species of freshwater fish produced from the Lake such as Gymnarchus, Clarias and Heterotis are very popular with the fish consumers in Nigeria; hence Lake Chad processed fish is transported long distances to southern Nigerian markets. Lake Chad thus contributes significantly to the provision of fish protein and to the Green Revolution Programme
Resumo:
Carbohydrates, protein, lipid and crude fibre were found to reduce in amount from the anterior to posterior regions along the gut of Sarotherodon galilaeus collected from Lake Kainji. Different regions of the gut exhibited different absorptive powers and all the compounds were differently absorbed in amount. Different sizes of fish showed different absorptive capacity
Resumo:
Phosphorus removal by wetlands and basins in Lake Tahoe may be improved through designing these systems to filter storm water through media having higher phosphorus removal capabilities than local parent material. Substrates rich in iron, aluminum and calcium oftentimes have enhanced phosphorus removal. These substrates can be naturally occurring, byproducts of industrial or water treatment processes, or engineered. Phosphorus removal fundamentally occurs through chemical adsorption and/or precipitation and much of the phosphorus can be irreversibly bound. In addition to these standard media, other engineered substrates are available to enhance P removal. One such substrate is locally available in Reno and uses lanthanum coated diatomaceous earth for arsenate removal. This material, which has a high positive surface charge, can also irreversibly remove phosphorus. Physical factors also affect P removal. Specifically, specific surface area and particle shape affect filtration capacity, contact area between water and the surface area, and likelihood of clogging and blinding. A number of substrates have been shown to effectively remove P in case studies. Based upon these studies, promising substrates include WTRs, blast furnace slag, steel furnace slag, OPC, calcite, marble Utelite and other LWAs, zeolite and shale. However, other nonperformance factors such as environmental considerations, application logistics, costs, and potential for cementification narrow the list of possible media for application at Tahoe. Industrial byproducts such as slags risk possible leaching of heavy metals and this potential cannot be easily predicted. Fly ash and other fine particle substrates would be more difficult to apply because they would need to be blended, making them less desirable and more costly to apply than larger diameter media. High transportation costs rule out non-local products. Finally, amorphous calcium products will eventually cementify reducing their effectiveness in filtration systems. Based upon these considerations, bauxite, LWAs and expanded shales/clays, iron-rich sands, activated alumina, marble and dolomite, and natural and lanthanum activated diatomaceous earth are the products most likely to be tested for application at Tahoe. These materials are typically iron, calcium or aluminum based; many have a high specific surface area; and all have low transportation costs. (PDF contains 21 pages)