49 resultados para Heavy metals -- Absorption
Resumo:
Marine mammals, such as dolphins, can serve as key indicator species in coastal areas by reflecting the effects of natural and anthropogenic stressors. As such they are often considered sentinels of environmental and ecosystem health (Bossart 2006; Wells et al. 2004; Fair and Becker 2000). The bottlenose dolphin is an apex predator and a key component of many estuarine environments in the southeastern United States (Woodward-Clyde Consultants 1994; SCDNR 2005). Health assessments of dolphins are especially critical in areas where populations are depleted, show signs of epidemic disease and/or high mortality and/or where habitat is being altered or impacted by human activities. Recent assessments of environmental conditions in the Indian River Lagoon, Florida (IRL) and the estuarine waters surrounding Charleston, South Carolina (CHS) highlight the need for studies of the health of local bottlenose dolphins. While the condition of southeastern estuaries was rated as fair in the National Coastal Condition Report (U.S. EPA 2001), it was noted that the IRL was characterized by poorer than expected benthic communities, significant sediment toxicity and increased nutrient concentrations. Similarly, portions of the CHS estuary have sediment concentrations of aliphatic aromatic hydrocarbons, select inorganic metals, and some persistent pesticides far in excess of reported bioeffect levels (Hyland et al. 1998). Long-term trends in water quality monitoring and recent scientific research suggest that waste load assimilation, non-point source runoff impacts, contaminated sediments, and toxic pollutants are key issues in the CHS estuary system. Several ‘hot spots’ with high levels of heavy metals and organic compounds have been identified (Van Dolah et al. 2004). High concentrations of anthropogenic trace metals, polychlorinated biphenyls (PCB’s) and pesticides have been found in the sediments of Charleston Harbor, as well as the Ashley and Cooper Rivers (Long et al. 1998). Two superfund sites are located within the CHS estuary and the key contaminants of concern associated with these sites are: polycyclic aromatic hydrocarbons (PAH), lead, chromium, copper, arsenic, zinc and dioxin. Concerns related to the overall health of IRL dolphins and dermatologic disease observed in many dolphins in the area (Bossart et al. 2003) initiated an investigation of potential factors which may have impacted dolphin health. From May-August 2001, 35 bottlenose dolphins died in the IRL during an unusual mortality event (MMC 2003). Many of these dolphins were diagnosed with a variety of skin lesions including proliferative ulcerative dermatitis due to protozoa and fungi, dolphin pox and a vesicular dermatopathy of unknown etiology (Bossart et al. 2003). Multiple species from fish to dolphins in the IRL system have exhibited skin lesions of various known and unknown etiologies (Kane et al. 2000; Bossart et al. 2003; Reif et al. 2006). On-going photo-identification (photo-ID) studies have documented skin diseases in IRL dolphins (Mazzoil et al. 2005). In addition, up to 70% of green sea turtles in the IRL exhibit fibropapillomas, with the highest rates of occurrence being seen in turtles from the southern IRL (Hirama 2001).
Resumo:
Guánica Bay is a major estuary on the southwest coast of Puerto Rico. Significant coral reef ecosystems are present outside the bay. These valuable habitats may be impacted by transport of sediments, nutrients and contaminants from the watershed, through the bay and into the offshore waters. The National Oceanic and Atmospheric Administration’s (NOAA) National Centers for Coastal Ocean Science (NCCOS), in consultation with local and regional experts, conducted an interdisciplinary assessment of coral reef ecosystems, contaminants, sedimentation rates and nutrient distribution patterns in and around Guánica Bay. This work was conducted using many of the same protocols as ongoing monitoring work underway elsewhere in the U.S. Caribbean and has enabled comparisons among coral reef ecosystems between this study and other locations in the region. This characterization of Guánica marine ecosystems establishes benchmark conditions that can be used for comparative documentation of future change, including possible negative outcomes due to future land use change, or improvement in environmental conditions arising from management actions. This report is organized into six chapters that represent a suite of interrelated studies. Chapter 1 provides a short introduction to the study area. Chapter 2 is focused on biogeographic assessments and benthic mapping of the study area, including new surveys of fish, marine debris and reef communities on hardbottom habitats in the study area. Chapter 3 quantifies the distribution and magnitude of a suite of contaminants (e.g., heavy metals, PAHs, PCBs, pesticides) in both surface sediments and coral tissues. Chapter 4 presents results of sedimentation measurements in and outside of the bay. Chapter 5 examines the distribution of nutrients in in the bay, offshore from the bay and in the watershed. Chapter 6 is a brief summary discussion that highlights key findings of the entire suite of studies.
Resumo:
Porphyrin metabolic disruption from exposure to xenobiotic contaminants such as heavy metals, dioxins, and aromatic hydrocarbons can elicit overproduction of porphyrins. Measurement of porphyrin levels, when used in conjunction with other diagnostic assays, can help elucidate an organism’s physiological condition and provide evidence for exposure to certain toxicants. A sensitive microplate fluorometric assay has been optimized for detecting total porphyrin levels in detergent solubilized protein extracts from symbiotic, dinoflagellate containing cnidarian tissues. The denaturing buffer used in this modified assay contains a number of potentially interfering components (e.g., sodium dodecyl sulfate (SDS), dithiothreitol (DTT), protease inhibitors, and chlorophyll from the symbiotic zooxanthellae), which required examination and validation. Examination of buffer components were validated for use in this porphyrin assay; while the use of a specific spectrofluorometric filter (excitation 400 ± 15 nm; emission 600 ± 20 nm) minimized chlorophyll interference. The detection limit for this assay is 10 fmol of total porphyrin per μg of total soluble protein and linearity is maintained up to 5000 fmol. The ability to measure total porphyrins in a SDS protein extract now allows a single extract to be used in multiple assays. This is an advantage over classical methods, particularly when tissue samples are limiting, as is often the case with coral due to availability and collection permit restrictions.
Resumo:
The presence of even very minute quantities of pollutants may become harmful either due to their direct effect on zooplankton or indirectly due to the transfer of the pollutants to other trophic levels through zooplankton. The recent trend in marine pollution studies is therefore to find out the effects of very minute quantities of these pollutants on marine zooplankton and the methods of their accumulation and transfer to the organisms of higher trophic level including man. A review of laboratory and field studies concerning the effects of pollutants such as hydrocarbons, crude oil, heavy metals, pesticides and heated waste water on the survival, breeding, movement, faecal pellet production, growth and development on marine zooplankton is presented.
Resumo:
Although other research studies on areas such as the physical-chemical, nutrients and phytoplankton status of Lake Kyoga systems have been given a lot of attention (e.g. Mungoma 1988 and NaFIRRI 2006), efforts to determine the pollution status of this system, especially by heavy metals as one of the worldwide emerging environmental problems, is still limited. Many trace metals are regarded as serious pollutants of aquatic ecosystems because of their persistence, toxicity and ability to be incorporated into food chains (Mwamburi J., and Nathan O.F., 1997). Given the rapid human population growth and the associated economic activities both within the rural and urban areas in Uganda, such fish production systems are becoming very prone to various kinds of pollution including that by heavy metals. Anthropogenic factors such deforestation, use of chemicals and dumping of metallic products, spillages of fuels from outboard engines and many others and or natural processes involving atmospheric deposition by wind or rain, surface run-offs and streams flows from the catchment introduces heavy metals into the lake environment,.
Resumo:
The acute toxicity test conducted by static bioassay techniques have revealed that among selected heavy metals, copper is more toxic than zinc and mercury to Planaxis sulcatus and Trochus radiatus. The natural availability of heavy metals in the surrounding environment of these organisms is found to be deciding factor for their toxicity. Natural habitat of the animal also contributes to the sensitivity of a particular animal to the heavy metals tested. In addition the tendency of the animal to overcome the adverse conditions in their surrounding also plays a significant role in toxicity of pollutants.
Resumo:
Adverse effects of toxic substances on the environmental quality have become a subject of concern in recent years. Toxicity of heavy metals has never been in dispute and therefore their presence in our natural environment is undesirable. This study was undertaken to establish the capability of Perna viridis as a monitor for pollution in the Manora channel. Accumulation of Zinc, Copper, Iron and Manganese by marine mussels, sampled from Manora channel, was determined. Metal load varied markedly between individuals from the same populatin. This variability was partly accounted for systematic relationship between metal load and body weight and age. The distribution of metal between the major organs was considered, but the analysis of separate organs showed no advantage for their use as a biological monitor. comparison between Iron, Manganese, Copper and Zinc concentration in ambient sea water and in the mussel showed no clear correspondence. The results suggest that the mussel is capable of acting as a biological monitor, although may not be a good short term monitor of Iron, Manganese, Zinc and Copper. It may have potential as a long term and site comparison monitor for metals, once inherent variability is taken into account
Resumo:
In this study, in order to assess the ecological health status and zoning of soft bottom of Gorgan Bay, the spatial and temporal distribution of macrofauna and their relationship with environmental stress were investigated. Sediment samples were collected using a Van Veen grab at 22 sampling points, seasonally during 2012-2013. The averages (±SD) of the percentages of sand, silt, clay and TOM (Total Organic Matter) in the sediment samples were determined (44.4± 15, 53.4 ± 14, and 2.2 ±2.2 and 7.2% ± 1.6, respectively). Our results showed that mean (range) of Al, As, Cu, Fe, Ni, Pb and Zn in the sediment samples were 1.2 % (0.4-2.1), 4.8 (2.5- 10.3) ppm, 10.5 (4.4-16.9) ppm, 1 (0.4 – 1.6) % , 13.6 (6.2-21.5) ppm, 9.1 (4.7-12.9) ppm and 23.9 (3.1-39.4) ppm, respectively. In spring, both Al and Ni were higher than the guideline level. In the event that arsenic was exceeds the guidelines in summer. In this study, 14 species of macrofauna from 12 families were identified. Polychaeta with 3 species was the most dominant group in terms of abundance. The four most abundant taxa making up 85% of all specimens (Streblospio gynobranchiata, Tubificidae, Hediste versicolor and Abra segmentum). The western area were characterized by the higher species diversity (H', 1.94). So Gorgan Bay presents transitional macrobenthic assemblages that are spatially distributed along substrate gradients .The mean of Shannon index, BENTIX, BO2A, AMBI and M-AMBI in the bay was 1.3, 2.2, 0.4, 3.2 and 0.65 respectively. According to the results of these indices, ecological status of the western part of the bay assessed better than the other parts. According to the results of the nmMDS (non-metric Multidimensional Scaling), PCA (Principal Components Analysis), the map of distribution of heavy metals and the map of the ecological status , it seems Gorgan Bay is divided into two separate zones (the eastern and the western parts).M-AMBI finaly introduced reliable index for assessing the ecological status of the Bay.
Resumo:
Ecological risk assessment is determination of the probability of an adverse effect occurring to an ecological system. This investigation was carried out to assess the ecological risk of sediment in coast of Bandar Abbass in 9 stations including Shilat Jetty, Hotel Amin, Poshte-Shahr, Souro, Bahonar Jetty, Powerhouse, Refinery and Rajaee Jetty from autumn 2013 to summer 2014. Results showed that Polychaete with 1177 , 1109 , 414 , 573 , ind.m2 in autumn 91 , winter 91 , spring 92 and summer 92 were the most abundant in frequency respectively. Among ecological indices, the Margalof that ranged from 4 to 7 was in a good situation while Shanoon and Berger – Parker with 1.2 (at most) and 0.32 (at least) respectively indicated an environment with probable stress. Heavy metal distribution obtained as Cd>Pb>Cu>Zn in sediment. In tissue, the distribution of heavy metals were as Crab>polychaete>Bivalve>gastropod for Pb, Gastropod>Bivalve>Polychaete>Crab for Cd, Gastropod>Crab>Polychaete>Bivalve for Cu and Gastropod>Bivalve>Crab>Polychaete for Zn. Maximum and Minimum of TOM obtained 10.16 and 1.96 percent in Posht-e-Shahr and shilat Jetty respectively and clay was the dominant grain in most area. Bioaccumulation coefficient of Zn and Cu was high in all stations. Igeo as a single index was high for Cd indicating a high risk in all stations. Potential Ecological Risk was high for Cu and Zn and goes increasingly from shilat Jetty to Rajee Jetty but goes down for Pb. Pollution index for Cu and Pb was nearly the same as Potential Ecological Risk but for Zn goes constantly. Among PAH, 5-ring and 6-ring PAhs were more concentrate comparison to other compounds in sediment. 2-ring and 3-ring, 3-ring, 4-ring and 5-ring and 5-ring PAHs were more concentrate in Gastropod, Bivalve, Crab and Polychaete respectively. HI as an index of PAH obtained 1. Ecological Risk Indices showed that the heavy metals are a serious risk for invertebrate in sediment but PAHs are not a risk for benthic community.
Resumo:
The paper discusses a closed recycle shrimp farm in Thailand which integrates effluent management. The closed recycle system can reduce risk of heavy metals, pesticides, ammonia, and other toxic particles coming in with water from natural sources by reducing the quantity of water brought to the farm.
Resumo:
The impact of Petrochemical Special Economic Zone (PETZONE) activities on the health status of Jafari Creek was studied by assessing the changes in macroinvertebrate assemblages in nine sites during September 2006- January 2008. Furthermore to evaluate the ecological status of the Jafari Creek the WFD indices (i.e. AMBI, M-AMBI) were used. The relationship between spatial pattern of macro invertebrate assemblages and ambient factors (i.e. water temperature, salinity, pH, dissolved oxygen, turbidity, electrical conductivity, total dissolved solid, total hardness, total nitrogen, ammonia, total phosphorous, chemical oxygen demand, biological oxygen demand, sediment grain size distribution, sediment organic content, heavy metals contents) was measured. Background Enrichment indices, Contamination factor and Contamination degree, were used to assess the health status in the study area based on Nickel, Lead, Cadmium and Mercury contents of the sediments. The macrobenthic communities had a low diversity and were dominated by opportunistic taxa, and the AMBI and M-AMBI indices need to be calibrated before using in Persian Gulf and its coastal waters. The BIO-ENV analysis identified pH, dissolved oxygen, TDS, and the total organic content of sediments as the major environmental variables influencing the infaunal pattern. This suggests that management should attempt to ensure minimal disturbance to environmental variables underlying the spatial variation in macroinvertebrate assemblages. Background Enrichment indices showed that the health of Jafari Creek has declined over time due to the constant discharge of heavy metals to the Creek system. Furthermore WQS index shows that the quality condition of the water column in Jafari Creek, regard to the calculated number (3) is week. These indices also identified a significant degree of pollution in the study area. The decrease in the ecological potential of Jafari Creek was best highlighted by the alteration in macrobenthic assemblages.
Resumo:
The Moosa Creek extends from its opening into the Persian Gulf, with some sub narrow creeks leading to it. Zangi creek is one of the main branches of Moosa creek. The creek contains numerous sources of organic pollution, including sewage outlet flows and boat waste. After establishing the Petrochemical special Economic Zone (PETZONE) in 1997 near to the Zangi Creek, the pipelines, streets and railway made it distinct from eastern and western parts of this creek. Industrial activities have released sludge and effluents in this creek along these years. A survey of the Zangi creek was performed, assessing water properties, organic pollution, and the population density, distribution and diversity of macrobenthic fauna through bi-monthly sampling from July 2006 to September 2007. Samples were collected from water near the bottom and sediment at 7 stations include 2 stations inside the distinct Zangi creek and 4 stations along a transect with 1 km distances between them in eastern free part and one reference station located at the Persian Gulf entrance to the Moosa creek. The environmental parameters such as temperature, salinity, pH, dissolved oxygen, COD, turbidity, EC and heavy metals include Hg, Cd, Pb, Ni as well as percentage silt-clay and total organic matter of the sediment were measured. The faunal population density and their distribution are discussed in relation to the environmental changes. Results showed spatial heterogeneity in faunal distribution of the Zangi creek. Nine groups of macrofauna were identified out of distinct zangi creek. Polychaets formed the dominant group (48%) followed by bivalves (13%), gastropods (10%), Decapods (2%), Tanaids (5%), and all other groups (22%). The distinct creek was heavily polluted without any macrofauna communities probably as a consequence of the high pH, COD, low salinity and heavy metals contamination specially Cd and Pb. The other stations near to the disposal site were found with macrofauna communities commonly tolerant to organic pollution, At 3 km east of the disposal site, macrofauna is comparable to the surrounded creek, whereas macrofauna still indicate environmental degradation. Farther a way, faunal density decreases and equilibrium taxa gradually replace opportunistic species, while the other stations were far from polluted area contained lower pollution and relatively healthy macrofauna. The mean biomass of macrobenthic fauna were estimated for the whole studied area. The results are considered in Minimum density and biomass in surrounded creek and maximum density and biomass in 3 km of surrounded area. Biodiversity Indices were low in surrounded creek. The Shanon-weaver information index was used to describe the spatially variations in diversity. Macrofauna density, shanon and simpson index were significantly variable between surrounded and free parts of Zangi creek (p<0.05). The numerical abundance of macrobenthose varied from 221. m-2 in polluted area to 4346 m-2 in free part of Zangi creek. The Shanon-weaver information index varied from 0.4 in distinct area to 2.9 in reference station. The physico- chemical changes between distinct and free creeks showed significant variations such as pH, salinity and EC. Salinity and EC were significantly positive correlate to macrofauna density, whereas pH and TOM percentage indicated significantly negative correlation to density. Heavy metals concentrations in sediments were higher than water samples. Concentration pattern of heavy metals in sediments and water samples were Ni>Pb>Cd>Hg. Salinity and pH were significantly correlated to metals in sediments (p<0.01). No significant correlation were found between Macrofauna density and heavy metals (p<0.05).
Resumo:
In this project sampling was done from 9 stations in 3 depths during 5 seasons to separate, identify and examine the biodiversity of cyanobacteria. Another sampling also has been done to analyse all physical and physicochemical parameters, primary production and polluting agents such as heavy metals and oil hydrocarbons in water and sediments. Along with optimization of Oscillatoria to study the ability of producing natural substances, these cyanobacteria were analysed from the point of antimicrobial and mutagenic effects. To examine the relationships among analysed parameters, the regression test, analysis of varian and Post Hoc were used. As the result of this study 48 genus of cyanobacteria were pecognised among which 35.5% were croco ccales and 64.4% were Hermogonals. Oscillatoria was one of the Filamentous cyanobacteria which had antibacterial and mutagenic effects. The results of multicommunity consistency varians test, post Hoc and homogenous subsets show significant difference between biodiversity of cyanotbacteria in coral ecosystem, Mangrove and transite. The linear correlation coefficient between biodiversity of cyanobacteria and bioenvironmental agents were examined, but there was no continuous relation between these factors and biological biodiversity. In Surface layer there was a significant correlation coefficent at 0.048 and probability at 95% confidence interval. Also, the biodiversity is depended on oil pollution and heavy metals such as copper (Cu) and chromium (Cr).
Resumo:
Research included: population structure of Indian mackerel (Rastrelliger kanagurta); a National Plan of Action for the conservation and management of sharks; levels of heavy metals in shark products; and a database on rays.