71 resultados para First Baptist Church of Charlotte, North Carolina.


Relevância:

100.00% 100.00%

Publicador:

Resumo:

While New Hanover County is the second smallest county in North Carolina, it is also the second most densely populated with approximately 850 people per square mile. Nestled between the Cape Fear River and Atlantic Ocean with surrounding barrier island beach communities, the County’s geographic location provides a prime vacation destination, as well as an ideal location for residents who wish to live at the water’s edge. Wilmington is the largest city in the County with a population just under 200,000. Most of the Wilmington metropolitan area is developed, creating intense development pressures for the remaining undeveloped land in the unincorporated County. In order to provide development opportunities for mixed use or high density projects within unincorporated New Hanover County where appropriate urban features are in place to support such projects without the negative effects of urban sprawl, County Planning Staff recently developed an Exceptional Design Zoning District (EDZD). Largely based on the LEED for Neighborhood Development program, the EDZD standards were scaled to fit the unique conditions of the County with the goal of encouraging sustainable development while providing density incentives to entice the use of the voluntary district. The incentive for the voluntary zoning district is increased density in areas where the density may not be allowed under normal circumstances. The rationale behind allowing for higher density projects is that development can be concentrated in areas where appropriate urban features are in place to support such projects, and the tendency toward urban sprawl can be minimized. With water quality being of high importance, it is perceived that higher density development will better protect water quality then lower density projects. (PDF contains 4 pages)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The South Carolina Coastal Information Network (SCCIN) emerged as a result of a number of coastal outreach institutions working in partnership to enhance coordination of the coastal community outreach efforts in South Carolina. This organized effort, led by the S.C. Sea Grant Consortium and its Extension Program, includes partners from federal and state agencies, regional government agencies, and private organizations seeking to coordinate and/or jointly deliver outreach programs that target coastal community constituents. The Network was officially formed in 2006 with the original intention of fostering intra-and inter- agency communication, coordination, and cooperation. Network partners include the S.C. Sea Grant Consortium, S.C. Department of Health and Environmental Control – Office of Ocean and Coastal Resource Management and Bureau of Water, S.C. Department of Natural Resources – ACE Basin National Estuarine Research Reserve, North Inlet-Winyah Bay National Estuarine Research Reserve, Clemson University Cooperative Extension Service and Carolina Clear, Berkeley-Charleston-Dorchester Council of Governments, Waccamaw Regional Council of Governments, Urban Land Institute of South Carolina, S.C. Department of Archives and History, the National Oceanic and Atmospheric Administration – Coastal Services Center and Hollings Marine Laboratory, Michaux Conservancy, Ashley-Cooper Stormwater Education Consortium, the Coastal Waccamaw Stormwater Education Consortium, the S.C. Chapter of the U.S. Green Building Council, and the Lowcountry Council of Governments. (PDF contains 3 pages)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The community structure of fishes associated with pelagic Sargassum spp. and open water lacking Sargassum was examined during summer and fall cruises, 1999–2003, in the Gulf Stream off North Carolina. Significantly more individual fishes (n= 18,799), representing at least 80 species, were collected from samples containing Sargassum habitat, compared to 60 species (n=2706 individuals) collected from openwater habitat. The majority (96%) of fishes collected in both habitats were juveniles, and planehead filefish (Stephanolepis hispidus) dominated both habitats. Regardless of sampling time (day or night), Sargassum habitat yielded significantly higher numbers of individuals and species compared with open-water collections. Overall, fishes collected by neuston net tows from Sargassum habitat were significantly larger in length than fishes collected from open-water habitat with neuston nets. A significant positive, linear relationship existed between numbers of fishes and the quantity of Sargassum collected by neuston net. Underwater video recordings indicated a layered structure of fishes among and below the algae and that smaller fishes were more closely associated with the algae than larger fishes. Observations of schooling behaviors of filefishes (Monacanthidae), dolphinfish (Coryphaena hippurus), and jacks (Carangidae), and fish-jellyfish associations were also recorded with an underwater video camera. Our data indicate that Sargassum provides a substantial nursery habitat for many juvenile fishes off the U.S. southeast coast.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thread herrings, Opisthonema spp., are small, nearshore, pelagic clupeid fishes that form dense, surface schools in tropical to subtropical coastal waters. Ecologically, thread herrings form an important forage base for many large, predatory fishes (Finucane and Vaught, 1986). Commercially, thread herrings are targeted by artisanal to moderate-sized seine fisheries off the coasts of Ecuador and Peru (Patterson and Santos, 1992), Costa Rica (Stevenson and Carranza, 1981), Venezuela, the continental margins of the Caribbean, the Gulf of Mexico, and near the islands of Cuba, Hispaniola, Puerto Rico, Jamaica, and Trinidad (Reintjes, 1978). Most of the catch is reduced to fish meal and fish oil (Patterson and Santos, 1992), although minor quantities are used for human consumption (Reintjes, 1978).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Common Octopus, Octopus vulgaris, is an r-selected mollusk found off the coast of North Carolina that interests commercial fishermen because of its market value and the cost-effectiveness of unbaited pots that can catch it. This study sought to: 1) determine those gear and environmental factors that influenced catch rates of octopi, and 2) evaluate the feasibility of small-scale commercial operations for this species. Pots were fished from August 2010 through September 2011 set in strings over hard and sandy bottom in waters from 18 to 30 m deep in Onslow Bay, N.C. Three pot types were fished in each string; octopus pots with- and without lids, and conch pots. Proportional catch was modeled as a function of gear design and environmental factors (location, soak time, bottom type, and sea surface water temperature) using binomially distributed generalized linear models (GLM’s); parsimony of each GLM was assessed with Akaike Information Criteria (AIC). A total of 229 octopi were caught throughout the study. Pots with lids, pots without lids, and conch pots caught an average of 0.15, 0.17, and 0.11 octopi, respectively, with high variability in catch rates for each pot type. The GLM that best fit the data described proportional catch as a function of sea surface temperature, soak time, and station; greatest proportional catches occurred over short soak times, warmest temperatures, and less well known reef areas. Due to operating expenses (fuel, crew time, and maintenance), low catch rates of octopi, and high gear loss, a directed fishery for this species is not economically feasible at the catch rates found in this study. The model fitting to determine factors most influential on catch rates should help fishermen determine seasons and gear soak times that are likely to maximize catch rates. Potting for octopi may be commercially practical as a supplemental activity when targeting demersal fish species that are found in similar habitats and depth ranges in coastal waters off North Carolina.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

If you own property on one of North Carolinas estuaries, you can use this guide as a tool to learn about the choices you have to control your shoreline erosion and help decide which approach may be right for you. In North Carolina, we make a distinction between waterfront property that is located on the estuary, referred to as estuarine, shoreline, soundfront or riverside property, and waterfront property located directly on the ocean, referred to as oceanfront. Why? State laws and regulations addressing estuarine and oceanfront property, and the available erosion control methods, are quite different. This guide focuses on estuarine property. We’ll introduce you to the six main erosion control options in use in North Carolina and give you information about the out-of-pocket costs and tangible benefits of each option. We’ll also give you information about “hidden” costs and benefits that you may want to factor into your decision-making. You are fortunate to have a piece of estuarine shoreline to call your own, whether it’s your year-round residence or a weekend getaway. And if you’ve noticed some shoreline erosion lately, you’re probably a little concerned. But there are ready solutions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper reviews the scientific data on the ecosystem services provided by shoreline habitats, the evidence for adverse impacts from bulkheading on those habitats and services, and describes alternative approaches to shoreline stabilization, which minimize adverse impacts to the shoreline ecosystem. Alternative shoreline stabilization structures that incorporate natural habitats, also known as living shorelines, have been popularized by environmental groups and state regulatory agencies in the mid-Atlantic. Recent data on living shoreline projects in North Carolina that include a stone sill demonstrate that the sills increase sedimentation rates, that after 3 years marshes behind the sills have slightly reduced biomass, and that the living shoreline projects exhibit similar rates of fishery utilization as nearby natural fringing marshes. Although the current emphasis on shoreline armoring in Puget Sound is on steeper, higher-energy shorelines, armoring of lower-energy shorelines may become an issue in the future with expansion of residential development and projected rates of sea level rise. The implementation of regulatory policy on estuarine shoreline stabilization in North Carolina and elsewhere is presented. The regulatory and public education issues experienced in North Carolina, which have made changes in estuarine shoreline stabilization policy difficult, may inform efforts to adopt a sustainable shoreline armoring strategy in Puget Sound. A necessary foundation for regulatory change in shoreline armoring policy, and public support for that change, is rigorous scientific assessment of the variety of services that natural shoreline habitats provide both to the ecosystem and to coastal communities, and evidence demonstrating that shoreline armoring can adversely impact the provision of those services.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Time series measurements of dimethylsulfide (DMS), particulate dimethylsulfoniopropionate (DMSPp), chlorophyll a (chl a), algal pigments, major nutrients, and the potential activity of DMSP lyase enzymes were made over a 2 yr period (6 March 2003 to 28 March 2005) near the mouth of the shallow, tidally mixed Newport River estuary, North Carolina, USA. DMSPp had a mean of 43 ± 20 nM (range = 10.5 to 141 nM, n = 85) and DMS a mean of 2.7 ± 1.2 nM (range = 0.9 to 7.0 nM). The mean DMS in Gallants Channel was not significantly different from that measured in the Sargasso Sea near Bermuda during a previous 3 yr time series study (2.4 ± 1.5 nM), despite there being a 43-fold higher mean chl a concentration (4.9 ± 2.4 µg l–1) at the coastal site. In winter, DMS was low and chl a was high in the surface waters of the Sargasso Sea, while the opposite was true at the coastal site. Consequently, DMS concentrations per unit algal chl a were on average 170 times higher in the Sargasso Sea than at the coastal site during the summer, but only 7 times higher during the winter. The much higher chl a-specific DMS concentrations at the oceanic site during the summer were linked to higher ratios of intracellular DMSP substrate and DMSP lyase enzyme per unit chl a. These differences in turn appear to be linked to large differences in nutrient concentrations and solar UV stress at the 2 sites and to associated differences in the composition of algal assemblages and physiological acclimation of algal cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Boat wakes in the Atlantic Intracoastal Waterway (AIWW) of North Carolina occur in environments not normally subjected to (wind) wave events, making sections of AIWW potentially vulnerable to extreme wave events generated by boat wakes. The Snow’s Cut area that links the Cape Fear River to the AIWW is an area identified by the Wilmington District of the U.S. Army Corps of Engineers as having significant erosion issues; it was hypothesized that this erosion could be being exacerbated by boat wakes. We compared the boat wakes for six combinations of boat length and speed with the top 5% wind events. We also computed the benthic shear stress associated with boat wakes and whether sediment would move (erode) under those conditions. Finally, we compared the transit time across Snow’s Cut for each speed. We focused on two size classes of V-hulled boats (7 and 16m) representative of AIWW traffic and on three boat speeds (3, 10 and 20 knots). We found that at 10 knots when the boat was plowing and not yet on plane, boat wake height and potential erosion was greatest. Wakes and forecast erosion were slightly mitigated at higher, planing speeds. Vessel speeds greater than 7 knots were forecast to generate wakes and sediment movement zones greatly exceeding that arising from natural wind events. We posit that vessels larger than 7m in length transiting Snow’s Cut (and likely many other fetch-restricted areas of the AIWW) frequently generate wakes of heights that result in sediment movement over large extents of the AIWW nearshore area, substantially in exceedance of natural wind wave events. If the speed, particularly of large V-hulled vessels (here represented by the 16m length class), were reduced to pre-plowing levels (~ 7 knots down from 20), transit times for Snow’s Cut would be increased approximately 10 minutes but based on our simulations would likely substantially reduce the creation of erosion-generating boat wakes. It is likely that boat wakes significantly exceed wind wave background for much of the AIWW and similar analyses may be useful in identifying management options.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

1. INTRODUCTION 1.1 Working Group History 2. SPECIES COMPOSITION AND DISTRIBUTION PATTERNS RELATED TO WATER MASSES 2.1 Mesopelagic Fishes 2.1.1 Dominant families 2.1.2 Large-scale feeding and/or spawning migration or expatriation? 2.1.3 Definition of water masses 2.1.4 Species composition 2.2 Crustacean Micronekton 2.2.1 Euphausiids 2.2.2 Mysids and decapods 2.3 Cephalopod Micronekton 2.3.1 Family Enoploteuthidae 2.3.2 Family Gonatidae 2.3.3 Family Onychoteuthidae 2.3.4 Family Pyroteuthidae 2.3.5 Other cephalopods 3. VERTICAL DISTRIBUTION PATTERNS 3.1 Mesopelagic Fishes 3.1.1 Significance of diel vertical migration 3.1.2 DVM patterns 3.1.3 Ontogenetic change in DVM patterns 3.2 Crustacean Micronekton 3.3 Cephalopod Micronekton 4. BIOMASS PATTERNS 4.1 Micronektonic Fish 5. LIFE HISTORY 5.1 Fish Micronekton 5.1.1 Age and growth 5.1.2 Production 5.1.3 Reproduction 5.1.4 Mortality 5.2 Crustacean Micronekton 5.2.1 Age and growth 5.2.2 Production 5.2.3 Reproduction and early life history 5.2.4 Mortality 5.3 Cephalopod Micronekton 5.3.1 Age and growth 5.3.2 Production 5.3.3 Reproduction and early life history 5.3.4 Mortality 6. ECOLOGICAL RELATIONS 6.1 Feeding Habits 6.1.1 Fish micronekton 6.1.2 Crustacean micronekton 6.1.3 Cephalopod micronekton 6.2 Estimating the Impact of Micronekton Predation on Zooplankton 6.2.1 Predation by micronektonic fish 6.3 Predators 6.3.1 Cephalopods 6.3.2 Elasmobranchs 6.3.3 Osteichthyes 6.3.4 Seabirds 6.3.5 Pinnipeds 6.3.6 Cetaceans 6.3.7 Human consumption 6.4 Predation Rate 6.5 Ecosystem Perspectives 6.6 Interactions between Micronekton and Shallow Topographies 7. SAMPLING CONSIDERATIONS 7.1 Net Trawling 7.1.1 Sampling gears 7.1.2 Sampling of surface migratory myctophids 7.1.3 Commercial-sized trawl sampling 7.1.4 Sampling of euphausiids and pelagic decapods 7.2 Acoustic Sampling 7.2.1 Acoustic theory and usage 7.3 Video Observations (Submersible and ROV) 8. SUMMARY OF PRESENT STATE OF KNOWLEDGE 8.1 Fish Micronekton 8.2 Crustacean Micronekton 8.3 Cephalopod Micronekton 9. RECOMMENDATIONS 10. REFERENCES 11. APPENDICES (122 page document)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Foreword Background and objectives [pdf, 0.84 MB] Country reviews and status reports Section I. Western North Pacific Japan Yasuwo Fukuyo, Ichiro Imai, Masaaki Kodama and Kyoichi Tamai Red tides and harmful algal blooms in Japan [pdf, 0.7 MB] People's Republic of China Tian Yan, Ming-Jiang Zhou and Jing-Zhong Zou A national report of HABs in China [pdf, 0.24 MB] Republic of Korea Sam Geun Lee, Hak Gyoon Kim, Eon Seob Cho and Chang Kyu Lee Harmful algal blooms (red tides): Management and mitigation in Korea [pdf, 0.27 MB] Russia Tatiana Y. Orlova, Galina V. Konovalova, Inna V. Stonik, Tatiana V. Morozova and Olga G. Shevchenko Harmful algal blooms on the eastern coast of Russia [pdf, 1.4 MB] Section II. Eastern North Pacific Canada F.J.R. "Max" Taylor and Paul J. Harrison Harmful marine algal blooms in western Canada [pdf, 0.87 MB] United States of America Vera L. Trainer Harmful algal blooms on the U.S. west coast [pdf, 0.5 MB] Mexico Jose L. Ochoa, S. Lluch-Cota, B.O. Arredondo-Vega, E. Nuñes-Vázquez, A. Heredia-Tapia, J. Pérez-Linares and R. Alonso-Rodriguez Marine Biotoxins and harmful algal blooms in Mexico's Pacific littora [pdf, 0.2 MB] Summary and conclusions [pdf, 0.6 MB] Appendices A. Members of the Working Group [pdf, 0.1 MB] B. Original terms of reference (Vladivostok, 1999) [pdf, 0.08 MB] C. Annual reports of WG 15 [pdf, 0.15 MB] D. Workshop report on taxonomy and identification of HAB species and data management [pdf, 0.15 MB] (Document pdf contains 156 pages)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Table of Contents [pdf, 1 Kb] Summary [pdf, 85 Kb] Introduction [pdf, 0.8 Mb] Major Species and Stocks of Crabs in the PICES Region [pdf, 1.23 Mb] Major Species and Stocks of Shrimps in the PICES Region [pdf, 0.5 Mb] Oceanography [pdf, 0.4 Mb] Sampling and Data Analysis [pdf, 0.38 Mb] Acknowledgements [pdf, 0.27 Mb] References [pdf, 0.33 Mb] Appendices [pdf, 0.3 Mb] Plates 1-5 [pdf, 0.95 Mb] (Document contains 83 pages)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Charlotte, De Soto, and Hardee counties are east-southeast of Tampa in west-central peninsular Florida, figure 1. In order to plan the future water-resource development of the area, information about the water resources is needed. To meet this need, the Water Resources Division of the U.S. Geological Survey, in cooperation with the Peace River Basin Board of the Southwest Florida Water Management District as part of the statewide cooperative program with the Division of Geology, Florida Board of Conservation, began a continuing hydrologic data collection program in July, 1963, as an initial step in the investigation and evaluation of the groundwater resources of Hardee and De Soto counties. A similar hydrologic data program commenced in Charlotte County in July, 1964. Previous work in Hardee and De Soto counties included a one year reconnaissance by the Division of Water Resources and Conservation, Florida Board of Conservation, which concluded in June, 1963, and resulted in a hydrologic report (Woodard, 1964). As an outgrowth of the hydrologic data program, a Map Series report portraying the chemical character of water in the Floridan aquifer in the southern Peace River basin was prepared in 1967 (Kaufman and Dion). The data contained herein constitute the basis for the Map Series report. Additional selected data, including records of wells and chemical analyses,, on the ground-water resources of the three county area are also included and are published to make the data available. (Document has 28 pages.)