69 resultados para FERTILIZATION
Resumo:
The daytime composition and relative abundance of zooplankton species were studied in three treatments of two replicate earthen ponds each with nutrient sources and water replenishment regimes. Treatment -A (200m super(2) surface area supplied 900kgha super(-1) pig manure only). Treatment -B (200m super(2) surface area supplied 70kgha super(-1) month super(-1) pig manure, 50kgha super(-1) month super(-1) N.P.K. [15:15:15] and 30kgha super(-1) month super(-1) Urea) and Treatment-C (1500m2 surface area supplied 1150kgha super(-1) month super(-1) commercial grade 40% crude protein compounded feed). Water replenishment for Treatment A was daily tidal deluge from the New Calabar River while that for treatment B and C was from column-well and occasional rains. No zooplankton species were recovered from the pig-manure only treatment (A) while only Diffugia constricta and Difflugia urceolata were the two protozoans that occurred together in treatments B (combined fertilization) and C (compounded feed only) in contrast, Difflugia acuminate and three rotifers, Collurella uncinata, Diurella stylata and Keratella quadrata occurred only treatment B. similarly, Arcella arenaria, Arcella costata, Centropyxis aculeate, Difflugia pyriformis, Branchionus calyciflorus, Lepadella patella, Polyarthra trigla and Onchocanmptus mohammedi were recovered from treatment C. Arcella costata was the most abundant zooplankton in the entire experiment, while Arcella arenaria was very abundant in treatment C, Collurella uncinata was very abundant in treatment B. The inference is that combined fertilization of earthen freshwater ponds tend to be more suitable for the culture of rotifers such as Brachionus calyciflorus, popular in fish larva nursery, while those supplied compounded feed could be used to produce protozoans where desirable
Resumo:
It is generally accepted by fish culturists that salmonid eggs are sensitive to mechanical shock and that the sensitivity varies with the stage of development of the eggs. In general, the period of greatest sensitivity is thought to occur between fertilization and ”eyeing”. However, it is reasonable to expect that, during a period (perhaps of several hours) following fertilization, sensitivity will be low because in nature during this period the eggs may be subject to some mechanical shock caused by the parent fish covering them with gravel. In 1983-4 and 1984-5 experiments were performed on brown trout (Salmo trutta L.) eggs to examine the effect of a standard mechanical shock (c. 2,500 eggs in 1983-4 and c. 8,400 eggs in 1984-5) at various stages of development upon survival to hatching and time of hatching.The results of these experiments are reported in this study.
Resumo:
The description of the embryonic and early larval stages of three species of marine fishes: the anhovy, Anchoa marinii, the menhaden Brevoortia aurea and the gurnard, Prionotus nudigula is given. The time required from the fertilization to the hatching for each species was calculated. The eggs of these three species are found in the plankton collected in the zone situated in the vicinity of Mar del Plata. The eggs are only found in the plancton which was close to the shore. The anchoa marinii eggs are found in the sea from the middle of December at a water temperature of approximately 16,0°C to the end of April. Their greatest concentration takes place in January at 20,0-21,0°C. The eggs of Brevoortia aurea are found in the plakton from the beginning of October at a water temperature of approximately 10,0°C to the middle of December. Their greatest concentration takes place in November at 13,0-15,0°C. Only once were the menhaden's eggs can be found in the sea from the middle of November at the water temperature of aproximately 13,0° to the end of April. Their greatest concentration takes place in January and February at 20,0-21,0°C.
Resumo:
Brown shrimp (Farfantepenaeus aztecus) are abundant along the Louisiana coast, a coastline that is heavily influenced by one of the world’s largest rivers, the Mississippi River. Stable carbon, nitrogen, and sulfur (CNS) isotopes of shrimp and their proventriculus (stomach) contents were assayed to trace riverine support of estuarine-dependent brown shrimp. Extensive inshore and of fshore collections were made in the Louisiana coastal zone during 1999–2006 to document shrimp movement patterns across the bay and shelf region. Results showed an unexpectedly strong role for nursery areas in the river delta in supporting the offshore fishery, with about 46% of immigrants to offshore regions arriving from riverine marshes. Strong river influences also were evident offshore, where cluster analysis of combined CNS isotope data showed three regional station groups related to river inputs. Two nearer-river mid-shelf station groups showed isotope values indicating river fertilization and productivity responses in the benthic shrimp food web, and a deeper offshore station group to the south and west showed much less river inf luence. At several mid-shelf stations where hypoxia is common, shrimp were anomalously 15N depleted versus their diets, and this d15N difference or mismatch may be useful in monitoring shrimp movement responses to hypoxia.
Resumo:
In this paper we present livestock breeding developments that could be taken into consideration in the genetic improvement of farmed aquaculture species, especially in freshwater fish. Firstly, the current breeding objective in aquatic species has focused almost exclusively on the improvement of body weight at harvest or on growth related traits. This is unlikely to be sufficient to meet the future needs of the aquaculture industry. To meet future demands breeding programs will most likely have to include additional traits, such as fitness related ones (survival, disease resistance), feed efficiency, or flesh quality, rather than only growth performance. In order to select for a multi-trait breeding objective, genetic variation in traits of interest and the genetic relationships among them need to be estimated. In addition, economic values for these traits will be required. Generally, there is a paucity of data on variable and fixed production costs in aquaculture, and this could be a major constraint in the further expansion of the breeding objectives. Secondly, genetic evaluation systems using the restricted maximum likelihood method (REML) and best linear unbiased prediction (BLUP) in a framework of mixed model methodology could be widely adopted to replace the more commonly used method of mass selection based on phenotypic performance. The BLUP method increases the accuracy of selection and also allows the management of inbreeding and estimation of genetic trends. BLUP is an improvement over the classic selection index approach, which was used in the success story of the genetically improved farmed tilapia (GIFT) in the Philippines, with genetic gains from 10 to 20 per cent per generation of selection. In parallel with BLUP, optimal genetic contribution theory can be applied to maximize genetic gain while constraining inbreeding in the long run in selection programs. Thirdly, by using advanced statistical methods, genetic selection can be carried out not only at the nucleus level but also in lower tiers of the pyramid breeding structure. Large scale across population genetic evaluation through genetic connectedness using cryopreserved sperm enables the comparison and ranking of genetic merit of all animals across populations, countries or years, and thus the genetically superior brood stock can be identified and widely used and exchanged to increase the rate of genetic progress in the population as a whole. It is concluded that sound genetic programs need to be established for aquaculture species. In addition to being very effective, fully pedigreed breeding programs would also enable the exploration of possibilities of integrating molecular markers (e.g., genetic tagging using DNA fingerprinting, marker (gene) assisted selection) and reproductive technologies such as in-vitro fertilization using cryopreserved spermatozoa.
Resumo:
◾ Report of Opening Session (p. 1) ◾ Report of Governing Council (p. 15) ◾ Report of the Finance and Administration Committee (p. 47) ◾ Reports of Science Board and Committees: Science Board Inter-sessional Meeting (p. 63); Science Board (p. 73); Biological Oceanography Committee (p. 87); Fishery Science Committee (p. 95); Marine Environmental Quality Committee (p. 105); MONITOR Technical Committee (p. 115); Physical Oceanography and Climate Committee (p. 125); Technical Committee on Data Exchange (p. 133) ◾ Reports of Sections, Working and Study Groups: Section on Carbon and Climate (p. 139); Section on Ecology of Harmful Algal Blooms in the North Pacific (p. 143); Working Group 18 on Mariculture in the 21st Century - The Intersection Between Ecology, Socio-economics and Production (p. 147); Working Group 19 on Ecosystem-Based Management Science and its Application to the North Pacific (p. 151); Working Group 20 on Evaluations of Climate Change Projections (p. 157); Working Group 21 on Non-indigenous Aquatic Species (p. 159); Study Group to Develop a Strategy for GOOS (p. 165) ◾ Reports of the Climate Change and Carrying Capacity Scientific Program: Implementation Panel on the CCCC Program (p. 169); CFAME Task Team (p. 175); MODEL Task Team (p. 181) ◾ Reports of Advisory Panels: Advisory Panel for a CREAMS/PICES Program in East Asian Marginal Seas (p. 187); Advisory Panel on Continuous Plankton Recorder Survey in the North Pacific (p. 193); Advisory Panel on Iron Fertilization Experiment in the Subarctic Pacific Ocean (p. 197); Advisory Panel on Marine Birds and Mammals (p. 201); Advisory Panel on Micronekton Sampling Inter-calibration Experiment (p. 205) ◾ Summary of Scientific Sessions and Workshops (p. 209) ◾ Membership List (p. 259) ◾ List of Participants (p. 277) ◾ List of PICES Acronyms (p. 301) ◾ List of Acronyms (p. 303)
Resumo:
Report of Opening Session (p. 1). Report of Governing Council (p. 15). Report of the Finance and Administration Committee (p. 65). Reports of Science Board and Committees: Science Board Inter-Sessional Meeting (p. 83); Science Board (p. 93); Biological Oceanography Committee (p. 105); Fishery Science Committee (p. 117); Marine Environmental Quality Committee (p. 129); Physical Oceanography and Climate Committee (p. 139); Technical Committee on Data Exchange (p. 145); Technical Committee on Monitoring (p. 153). Reports of Sections, Working and Study Groups: Section on Carbon and Climate (p. 161); Section on Ecology of Harmful Algal Blooms in the North Pacific (p. 167); Working Group 19 on Ecosystem-based Management Science and its Application to the North Pacific (p. 173); Working Group 20 on Evaluations of Climate Change Projections (p. 179); Working Group 21 on Non-indigenous Aquatic Species (p. 183); Study Group to Develop a Strategy for GOOS (p. 193); Study Group on Ecosystem Status Reporting (p. 203); Study Group on Marine Aquaculture and Ranching in the PICES Region (p. 213); Study Group on Scientific Cooperation between PICES and Non-member Countries (p. 225). Reports of the Climate Change and Carrying Capacity Program: Implementation Panel on the CCCC Program (p. 229); CFAME Task Team (p. 235); MODEL Task Team (p. 241). Reports of Advisory Panels: Advisory Panel for a CREAMS/PICES Program in East Asian Marginal Seas (p. 249); Advisory Panel on Continuous Plankton Recorder Survey in the North Pacific (p. 253); Advisory Panel on Iron Fertilization Experiment in the Subarctic Pacific Ocean (p. 255); Advisory Panel on Marine Birds and Mammals (p. 261); Advisory Panel on Micronekton Sampling Inter-calibration Experiment (p. 265). 2007 Review of PICES Publication Program (p. 269). Guidelines for PICES Temporary Expert Groups (p. 297). Summary of Scientific Sessions and Workshops (p. 313). Report of the ICES/PICES Conference for Early Career Scientists (p. 355). Membership (p. 367). Participants (p. 387). PICES Acronyms (p. 413). Acronyms (p. 415).
Resumo:
This report contains a chemical and biological characterization of sediments from the St. Thomas East End Reserves (STEER) in St. Thomas, U.S. Virgin Islands (USVI). The STEER Management Plan (published in 2011) identified chemical contaminants and habitat loss as high or very high threats and called for a characterization of chemical contaminants as well as an assessment of their effects on natural resources. The baseline information contained in this report on chemical contaminants, toxicity and benthic infaunal community composition can be used to assess current conditions, as well as the efficacy of future restoration activities. In this phase of the project, 185 chemical contaminants, including a number of organic (e.g., hydrocarbons and pesticides) and inorganic (e.g., metals) compounds, were analyzed from 24 sites in the STEER. Sediments were also analyzed using a series of toxicity bioassays, including amphipod mortality, sea urchin fertilization impairment, and the cytochrome P450 Human Reporter Gene System (HRGS), along with a characterization of the benthic infaunal community. Higher levels of chemical contaminants were found in Mangrove Lagoon and Benner Bay in the western portion of the study area than in the eastern area. The concentrations of polychlorinated biphenyls (PCBs), DDT (dichlorodiphenyltrichloroethane), chlordane, zinc, copper, lead and mercury were above a NOAA sediment quality guideline at one or more sites, indicating impacts may be present in more sensitive species or life stages in the benthic environment. Copper at one site in Benner Bay, however, was above a NOAA guideline indicating that effects on benthic organisms were likely. The antifoulant boat hull ingredient tributyltin, or TBT, was found at the third highest concentration in the history of NOAA’s National Status and Trends (NS&T) Program, which monitors the Nation’s coastal and estuarine waters for chemical contaminants and bioeffects. Unfortunately, there do not appear to be any established sediment quality guidelines for TBT. Results of the bioassays indicated significant sediment toxicity in Mangrove Lagoon and Benner Bay using multiple tests. The benthic infaunal communities in Mangrove Lagoon and Benner Bay appeared severely diminished.
Resumo:
Fisheries models have traditionally focused on patterns of growth, fecundity, and survival of fish. However, reproductive rates are the outcome of a variety of interconnected factors such as life-history strategies, mating patterns, population sex ratio, social interactions, and individual fecundity and fertility. Behaviorally appropriate models are necessary to understand stock dynamics and predict the success of management strategies. Protogynous sex-changing fish present a challenge for management because size-selective fisheries can drastically reduce reproductive rates. We present a general framework using an individual-based simulation model to determine the effect of life-history pattern, sperm production, mating system, and management strategy on stock dynamics. We apply this general approach to the specific question of how size-selective fisheries that remove mainly males will impact the stock dynamics of a protogynous population with fixed sex change compared to an otherwise identical dioecious population. In this dioecious population, we kept all aspects of the stock constant except for the pattern of sex determination (i.e. whether the species changes sex or is dioecious). Protogynous stocks with fixed sex change are predicted to be very sensitive to the size-selective fishing pattern. If all male size classes are fished, protogynous populations are predicted to crash even at relatively low fishing mortality. When some male size classes escape fishing, we predict that the mean population size of sex-changing stocks will decrease proportionally less than the mean population size of dioecious species experiencing the same fishing mortality. For protogynous species, spawning-per-recruit measures that ignore fertilization rates are not good indicators of the impact of fishing on the population. Decreased mating aggregation size is predicted to lead to an increased effect of sperm limitation at constant fishing mortality and effort. Marine protected areas have the potential to mitigate some effects of fishing on sperm limitation in sex-changing populations.
Resumo:
The goal of our study was to understand the spatial and temporal variation in spawning and settlement of gray snapper (Lutjanus griseus) along the West Florida shelf (WFS). Juvenile gray snapper were collected over two consecutive years from seagrass meadows with a benthic scrape and otter trawl. Spawning, settlement, and growth patterns were compared across three sampling regions (Panhandle, Big bend, and Southwest) by using otolith microstructure. Histology of adult gonads was also used for an independent estimate of spawning time. Daily growth increments were visible in the lapilli of snapper 11–150 mm standard length; ages ranged from 38 to 229 days and estimated average planktonic larval duration was 25 days. Estimated growth rates ranged from 0.60 to 1.02 mm/d and did not differ among the three sampling regions, but did differ across sampling years. Back-calculated fertilization dates from otoliths indicated that juveniles in the Panhandle and Big Bend were mainly summer spawned fish, whereas Southwest juveniles had winter and summer fertilization dates. Settlement occurred during summer both years and in the winter of 1997 for the southern portion of the WFS. Moon phase did not appear to be strongly correlated with fertilization or settlement. Histological samples of gonads from adults collected near the juvenile sampling areas indicated a summer spawning period.
Resumo:
A semi-arid environment is a major constraint for production of carp seed through hypophysation. At a water temperature above 31 degree C fishes often fail to respond to induced breeding or produce partial or full eggs with fairly less fertilization, leading to their mortality during embryonic development. Field trials with Labee rohita and Cyprinus carpio communis prove that hypophysation followed by stripping and hatching in a water medium with reduced temperature (below 31 degree C) through controlled use of ice-water and water showers can result in 50-60% fertilization of eggs and 50-72% hatching for L. rohita, and 40-90% fertilization and 49-77% hatching for C. carpio communis. Simultaneous breeding experiments of the species in normal water temperature (>31 degree C) showed negative results.
Resumo:
Artemia cysts were produced from the traditional solar salt works of Bangladesh through different fertilization treatments were tested for viability and hatching performance in different forms, such as processed and preserved, processed and decapsulated and unprocessed and undecapsulated. Decapsulated cysts performed maximum hatching (86.0%) in 20ppt salinity during 48 hours of incubation. The hatching percentage by the unprocessed and undecapsulated cysts were very low (12.0- 18.7%) in all the tested salinity grades.
Resumo:
Artemia cysts (of GSL, Utah, USA origin) were produced from the modified traditional solar salt works of Bangladesh during winter months through different feeding/fertilization treatments (T1, T2, T3, T4 ) were analyzed to understand the effects of treatments on their fatty acid profile. Palmitic, Linolenic, Eicosapantaenonic and Docohexaenoic acids (mg/g. DW) were found highest for the cysts in T1 (16.0% ±1 .36), T2 (14.7% ±0.47), T3 (4.7% ±0.40) and T4 (0.7% ±0.06) treatments, respectively. High amount of 18:3(n-3) acids in the cysts of all sources proves to be freshwater type of the cysts. The presence of marine type essential fatty acids in the cysts of all sources were found low for 20:5n-3 (3.7-4.7%) and very low for 22:6n-3 (0.09-0.7%). No significant variation was observed for 16:0 acids within the treatments, but for 18:3(n-3) acid, the variation was found highly significant (P= 0.0052) between T2 and T4 treatments. For 20:5(n-3), only variation between T2 and T4 was found insignificant (P=0.1161), but between other treatments, significant variation was observed between T2 and T4 (P=0.0241), T2 and T4 (P=0.0022) and T1 andT4 (P=0.0161). No significant variation was found in other treatments.
Resumo:
Human ingenuity has made it possible to advent the chromosome manipulation techniques to produce individuals with differing genomic status in a number of fish using various causal agents such as physical shocks (temperature or hydrostatic pressure), chemical (endomitotics) and anesthetic treatments either to suppress the second meiotic division shortly after fertilization of eggs or to prevent the first mitotic division shortly prior to mitotic cleavage formation. This results in the induction of polyploidy (triploidy and tetraploidy), gynogenesis (both meiotic and mitotic leading to clonal lines) and androgenesis in fish population. The rationale for the induction of such ploidy in fish has been its potential for generating sterile individuals, rapidly inbred lines and masculinized fish, which could be of benefit to fish farming and aquaculture. In this paper, these are critically reviewed and the implication of recently developed chromosome manipulation techniques to various fin fishes is discussed.
Resumo:
A study on the effects of artificial feeds on the growth and production of fishes in polyculture in 6 ponds along with some limnological conditions was conducted. Species of Indian and Chinese major carps (Labeo rohita, Catla catla, Cirrhinus mrigala, Hypophthalmicthys molitrix) and catfishes (Clarias batrachus, Clarias gariepinus) were stocked in 6 ponds. Stocking rate in both cases were 32044 fingerlings per hectare. Ratio of species of Rui:Catla:Mrigal:Silver carp:African Magur:Local Magur=25%:25%:5%:25%:14%:6%. Fertilization and artificial feeds were given in 3 ponds (treatment I) and only fertilization was done in other 3 ponds (treatment II). Average yield/ha/yr was 7.903 m.ton in case of fertilization and artificial feeding application and 3.374 m.ton in case of only fertilization application. Urea, TSP and cow dung were applied fortnightly at the rates of 400 kg/ha/yr, 2000 kg/ha/yr and 4000 kg/ha/yr respectively. Wheat bran, rice bran and mustard oil cake were given daily as an artificial feed in treatment I. Whereas treatment II was conducted without any artificial feed. Ratio of artificial feed was wheat bran:rice bran:oil cake=2:2:1 (by wt). Absence of artificial feed in 3 ponds under treatment II seriously affected the growth and production of fish.