69 resultados para Cuk Integrated
Resumo:
Economic analysis and performance of the integrated rice-prawn farming systems in the Mekong Delta (Vietnam) are reviewed, including the problems and constraints of this integrated system technology.
Resumo:
An outline is given of procedures to take in order to adopt an integrated rice-fish-vegetable farming system in India. Vegetables, which are cultivated in the dikes of the system, may include Luffa acutangula, Vigna unguiculata and Phaseolus vulgaris . When the water depth of the field rises to 30-40 cm, fish fingerlings (Puntius javanicus, Cyprinus carpio and Labeo rohita ) and prawn juveniles (Macrobranchium rosenbergii ) may be stocked. The advantages of such a system are listed and include year round employment opportunities for the farm family and improved farm family income and nutrition.
Resumo:
The Programme for Integrated Development of Artisanal Fisheries in West Africa (IDAF) was initiated in 1983 to help some 20 coastal states from Mauritiana to Angola which wished to develop and manage their artisanal fisheries through participatory and integrated approaches. IDAF was initially financed by Denmark and Norway. The second phase of the programme which started in January 1989 and its third phase, July 1984 are entirely financed by Denmark through the Danish International Development Assistance (DANIDA). IDAF objectives and activities to meet its goals are briefly discussed together with its beneficiaries and accomplishments.
Resumo:
This study estimated the adoption rate of integrated aquaculture-agriculture (IAA) technologies in Bangladesh and their impact on poverty and fish and food consumption in adopting households. We used a novel, simulation-based approach to impact assessment called Tradeoff Analysis for Multi-Dimensional Impact Assessment (TOA-MD). We used the TOA-MD model to demonstrate how it is possible to use available data to estimate adoption rates in relevant populations, and to quantify impacts on distributional outcomes such as poverty and food security, thus demonstrating ex ante the potential for further investment in technology dissemination. The analysis used baseline and end-of-project survey data from WorldFish-implemented Development of Sustainable Aquaculture Project (DSAP), promoting IAA. This dataset was used to simulate adoption and assess its impacts on poverty and food security in the target population. We found that, if adopted, IAA had a significant positive impact on reducing poverty and improving food security and income.
Resumo:
There are increasing requirements for impact assessment by development partners in order to increase the accountability and effectiveness of research and development projects. Impact assessment research has been dominated by conventional economic methods. This context challenges agricultural research organizations to develop and apply alternative impact assessment methods incorporating economic, social, and environmental impact components. In this study, we use the Tradeoff Analysis for Multi-Dimensional Impact Assessment (TOA-MD) model to evaluate the impact of integrated aquaculture-agriculture (IAA) adoption in Malawi. The study demonstrated that with a minimal data set, the TOA-MD model can be applied to predict and assess the adoption rates of new technologies and practices as well as their economic and non-economic impacts.
Resumo:
The National Oceanic and Atmospheric Administration (NOAA), in cooperation with the New Jersey Marine Sciences Consortium (NJMSC), hosted a workshop at Rutgers University on 19-21 September 2005 to explore ways to link the U.S. Integrated Ocean Observing System (IOOS) to the emerging infrastructure of the National Water Quality Monitoring Network (NWQMN). Participating partners included the Mid-Atlantic Coastal Ocean Observing Regional Association, U.S. Geological Survey, Rutgers University Coastal Ocean Observing Laboratory, and the New Jersey Sea Grant College. The workshop was designed to highlight the importance of ecological and human health linkages in the movement of materials, nutrients, organisms and contaminants along the Delaware Bay watershed-estuary-coastal waters gradient (hereinafter, the “Delaware Bay Ecosystem [DBE]”), and to address specific water quality issues in the mid-Atlantic region, especially the area comprising the Delaware River drainage and near-shore waters. Attendees included federal, state and municipal officials, coastal managers, members of academic and research institutions, and industry representatives. The primary goal of the effort was to identify key management issues and related scientific questions that could be addressed by a comprehensive IOOS-NWQMN infrastructure (US Commission on Ocean Policy 2004; U.S. Ocean Action Plan 2004). At a minimum, cooperative efforts among the three federal agencies (NOAA, USGS and EPA) involved in water quality monitoring were required. Further and recommended by the U.S. Commission on Ocean Policy, outreach to states, regional organizations, and tribes was necessary to develop an efficient system of data gathering, quality assurance and quality control protocols, product development, and information dissemination.
Resumo:
In this report we analyze the Topic 5 report’s recommendations for reducing nitrogen losses to the Gulf of Mexico (Mitsch et al. 1999). We indicate the relative costs and cost-effectiveness of different control measures, and potential benefits within the Mississippi River Basin. For major nonpoint sources, such as agriculture, we examine both national and basin costs and benefits. Based on the Topic 2 economic analysis (Diaz and Solow 1999), the direct measurable dollar benefits to Gulf fisheries of reducing nitrogen loads from the Mississippi River Basin are very limited at best. Although restoring the ecological communities in the Gulf may be significant over the long term, we do not currently have information available to estimate the benefits of such measures to restore the Gulf’s long-term health. For these reasons, we assume that measures to reduce nitrogen losses to the Gulf will ultimately prove beneficial, and we concentrate on analyzing the cost-effectiveness of alternative reduction strategies. We recognize that important public decisions are seldom made on the basis of strict benefit–cost analysis, especially when complete benefits cannot be estimated. We look at different approaches and different levels of these approaches to identify those that are cost-effective and those that have limited undesirable secondary effects, such as reduced exports, which may result in lost market share. We concentrate on the measures highlighted in the Topic 5 report, and also are guided by the source identification information in the Topic 3 report (Goolsby et al. 1999). Nonpoint sources that are responsible for the bulk of the nitrogen receive most of our attention. We consider restrictions on nitrogen fertilizer levels, and restoration of wetlands and riparian buffers for denitrification. We also examine giving more emphasis to nitrogen control in regions contributing a greater share of the nitrogen load.