361 resultados para Coastal Settlements
Resumo:
Tidal creek ecosystems are the primary aquatic link between stormwater runoff form the land and estuaries. Small tidal creeks begin in upland areas and drain into larger creeks forming a network. The creeks increase in size until they join a tidal river, sound, bay, or harbor that ultimately conect to the coastal ocean. The upper regions or headwaters of tidal creeks are "first responders" to stormwater runoff and are an important habitat for evaluating the impacts of coastal development on aquatic ecosystems. (PDF contains 22 pages)
Resumo:
This manual presents geographic information by state of occurrence, and descriptions of the socio-economic impact created by the invasion of non-indigenous and native transplanted animal species in the Laurentian Great Lakes and the coastal waters of the United States. It is not a comprehensive literature review, but rather is intended as a primer for those unfamiliar with the socio-economic impacts of invasive aquatic and marine animals. Readers should also note that the information contained in this manual is current as of its publication date. New information and new species are routinely being added to the wider literature base. Most of the information was gathered from a number of web sites maintained by government agencies, commissions, academic institutions and museums. Additional information was taken from the primary and secondary literature. This manual focuses on socio-economic consequences of invasive species. Thus, ecological impacts, when noted in the literature, are not discussed unless a connection to socio-economic factors can be made. For a majority of the species listed, either the impact of their invasion is not understood, or it is not published in sources surveyed. In the species summaries, sources of information are cited except for information from the U.S. Geological Survey’s (USGS) Nonindigenous Aquatic Species Database http://nas.er.usgs.gov. This website formed the base information used in creating tables on geographic distribution, and in many of the species summaries provided. Thus, whenever information is given without specific author/source and date citation, it has come from this comprehensive source. (PDF contains 90 pages)
Resumo:
Executive Summary: Information found in this report covers the years 1986 through 2005. Mussel Watch began monitoring a suite of trace metals and organic contaminants such as DDT, PCBs and PAHs. Through time additional chemicals were added, and today approximately 140 analytes are monitored. The Mussel Watch Program is the longest running estuarine and coastal pollutant monitoring effort conducted in the United States that is national in scope each year. Hundreds of scientific journal articles and technical reports based on Mussel Watch data have been written; however, this report is the first that presents local, regional and national findings across all years in a Quick Reference format, suitable for use by policy makers, scientists, resource managers and the general public. Pollution often starts at the local scale where high concentrations point to a specific source of contamination, yet some contaminants such as PCBs are atmospherically transported across regional and national scales, resulting in contamination far from their origin. Findings presented here showed few national trends for trace metals and decreasing trends for most organic contaminants; however, a wide variety of trends, both increasing and decreasing, emerge at regional and local levels. For most organic contaminants, trends have resulted from state and federal regulation. The highest concentrations for both metal and organic contaminants are found near urban and industrial areas. In addition to monitoring throughout the nation’s coastal shores and Great Lakes, Mussel Watch samples are stored in a specimen bank so that trends can be determined retrospectively for new and emerging contaminants of concern. For example, there is heightened awareness of a group of flame retardants that are finding their way into the marine environment. These compounds, known as polybrominated diphenyl ethers (PBDEs), are now being studied using historic samples from the specimen bank and current samples to determine their spatial distribution. We will continue to use this kind of investigation to assess new contaminant threats. We hope you find this document to be valuable, and that you continue to look towards the Mussel Watch Program for information on the condition of your coastal waters. (PDF contains 118 pages)
Resumo:
Executive Summary: The Estuary Restoration Act of 2000 (ERA), Title I of the Estuaries and Clean Waters Act of 2000, was created to promote the restoration of habitats along the coast of the United States (including the US protectorates and the Great Lakes). The NOAA National Centers for Coastal Ocean Science was charged with the development of a guidance manual for monitoring plans under this Act. This guidance manual, titled Science-Based Restoration Monitoring of Coastal Habitats, is written in two volumes. It provides technical assistance, outlines necessary steps, and provides useful tools for the development and implementation of sound scientific monitoring of coastal restoration efforts. In addition, this manual offers a means to detect early warnings that the restoration is on track or not, to gauge how well a restoration site is functioning, to coordinate projects and efforts for consistent and successful restoration, and to evaluate the ecological health of specific coastal habitats both before and after project completion (Galatowitsch et al. 1998). The following habitats have been selected for discussion in this manual: water column, rock bottom, coral reefs, oyster reefs, soft bottom, kelp and other macroalgae, rocky shoreline, soft shoreline, submerged aquatic vegetation, marshes, mangrove swamps, deepwater swamps, and riverine forests. The classification of habitats used in this document is generally based on that of Cowardin et al. (1979) in their Classification of Wetlands and Deepwater Habitats of the United States, as called for in the ERA Estuary Habitat Restoration Strategy. This manual is not intended to be a restoration monitoring “cookbook” that provides templates of monitoring plans for specific habitats. The interdependence of a large number of site-specific factors causes habitat types to vary in physical and biological structure within and between regions and geographic locations (Kusler and Kentula 1990). Monitoring approaches used should be tailored to these differences. However, even with the diversity of habitats that may need to be restored and the extreme geographic range across which these habitats occur, there are consistent principles and approaches that form a common basis for effective monitoring. Volume One, titled A Framework for Monitoring Plans under the Estuaries and Clean Waters Act of 2000, begins with definitions and background information. Topics such as restoration, restoration monitoring, estuaries, and the role of socioeconomics in restoration are discussed. In addition, the habitats selected for discussion in this manual are briefly described. (PDF contains 116 pages)
Resumo:
Healthy coastal habitats are not only important ecologically; they also support healthy coastal communities and improve the quality of people’s lives. Despite their many benefits and values, coastal habitats have been systematically modified, degraded, and destroyed throughout the United States and its protectorates beginning with European colonization in the 1600’s (Dahl 1990). As a result, many coastal habitats around the United States are in desperate need of restoration. The monitoring of restoration projects, the focus of this document, is necessary to ensure that restoration efforts are successful, to further the science, and to increase the efficiency of future restoration efforts.
Resumo:
This report outlines the potential impacts of coastal protection structures on the resources of the Monterey Bay National Marine Sanctuary. At least 15 miles of the Sanctuary’s 300-mile shoreline are currently armored with seawalls and riprap revetments. Most of these coastal protection structures are placed above the mean high tide line, the official boundary of the Sanctuary, yet some influences of armoring impinge on the marine realm and on recreational use. In addition, continued sea level rise and accompanying coastal retreat will force many of these structures below the high tide line over time. The Monterey Bay National Marine Sanctuary staff has recognized the significance of coastal armoring, identifying it as a critical issue in the Coastal Armoring Action Plan of the draft Joint Management Plan. This summary is intended to provide general background information for Sanctuary policies on coastal armoring. The impacts discussed include: aesthetic depreciation, beach loss due to placement, access restriction, loss of sand supply from eroding cliffs, passive erosion, and active erosion. In addition, the potential biological impacts are explored. Finally, an appraisal of how differing armor types compare in relation to impacts, expense and engineering is presented. While the literature cited in this report focus predominantly on the California coast, the framework for this discussion could have implications for other actively eroding coastlines. (PDF contains 26 pages.)
Resumo:
Coastal ecosystems and the services they provide are adversely affected by a wide variety of human activities. In particular, seagrass meadows are negatively affected by impacts accruing from the billion or more people who live within 50 km of them. Seagrass meadows provide important ecosystem services, including an estimated $1.9 trillion per year in the form of nutrient cycling; an order of magnitude enhancement of coral reef fish productivity; a habitat for thousands of fish, bird, and invertebrate species; and a major food source for endangered dugong, manatee, and green turtle. Although individual impacts from coastal development, degraded water quality, and climate change have been documented, there has been no quantitative global assessment of seagrass loss until now. Our comprehensive global assessment of 215 studies found that seagrasses have been disappearing at a rate of 110 square kilometers per year since 1980 and that 29% of the known areal extent has disappeared since seagrass areas were initially recorded in 1879. Furthermore, rates of decline have accelerated from a median of 0.9% per year before 1940 to 7% per year since 1990. Seagrass loss rates are comparable to those reported for mangroves, coral reefs, and tropical rainforests and place seagrass meadows among the most threatened ecosystems on earth.
Resumo:
This case study is part of STREAM’s four-country research project, which is exploring how recent advances in sustainable aquaculture have helped and can help improve coastal livelihoods and prevent unsustainable fishing practices in reef fisheries. (Pdf contains 65 pages).
Resumo:
This case study describes the present status and trends, and provides recommendations for the improvement of aquatic resources management within Hon Mun Marine Protected Area (MPA), Nha Trang Bay, Khanh Hoa Province, Vietnam. The case study also evaluates options for improving the livelihoods of local villagers through the development of ecologically sustainable aquaculture and fisheries, which include diversification following careful selection and trial of appropriate culture species, and application of “best practice” culture methods. (Pdf contains 43 pages).
Resumo:
An investigation was conducted into the deaths of more than 220 bottlenose dolphins (Tursiops truncatus) that occurred within the coastal bay ecosystem of mid-Texas between January and May 1992. The high mortality rate was unusual in that it was limited to a relatively small geographical area, occurred primarily within an inshore bay system separated from the Gulf of Mexico by barrier islands, and coincided with deaths of other taxa including birds and fish. Factors examined to determine the potential causes of the dolphin mortalities included microbial pathogens, natural biotoxins, industrial pollutants, other environmental contaminants, and direct human interactions. Emphasis was placed on nonpoint source pesticide runoff from agricultural areas, which had resulted from record rainfall that occurred during the period of increased mortality. Analytical results from sediment, water, and biota indicated that biotoxins, trace metals, and industrial chemical contamination were not likely causative factors in this mortality event. Elevated concentrations of pesticides (atrazine and aldicarb) were detected in surface water samples from bays within the region, and bay salinities were reduced to <10 ppt from December 1991 through April 1992 due to record rainfall and freshwater runoff exceeding any levels since 1939. Prolonged exposure to low salinity could have played a significant role in the unusual mortalities because low salinity exposure may cause disruption of the permeability barrier in dolphin skin. The lack of established toxicity data for marine mammals, particularly dermal absorption and bioaccumulation, precludes accurate toxicological interpretation of results beyond a simple comparison to terrestrial mammalian models. Results clearly indicated that significant periods of agricultural runoff and accompanying low salinities co-occurred with the unusual mortality event in Texas, but no definitive cause of the mortalities was determined. (PDF file contains 25 pages.)
Resumo:
Wild-harvest fisheries for live reef fish are largely over-exploited or unsustainable because of over-fishing and the widespread use of destructive fishing practices such as blast and cyanide fishing. Sustainable aquaculture – such as that of groupers – is one option for meeting the strong demand for reef fish, as well as potentially maintaining or improving the livelihoods of coastal communities. This report from a short study by the STREAM Initiative draws on secondary literature, media sources and four diverse case studies from at-risk reef fisheries, to frame a strategy for encouraging sustainable aquaculture as an alternative to destructive fishing practices. It was undertaken as a component of the APEC-funded project Collaborative Grouper Research and Development Network (FWG/01/2001) to better understand how recent technical advances in grouper culture and other complementary work – including that of the Asia-Pacific Marine Finfish Aquaculture Network (APMFAN) hosted by NACA – could better support the livelihoods of poor coastal communities. (PDF contains 49 pages)
Resumo:
Florida Sea Grant management and extension specialists developed a questionnaire to solicit information regarding the recipient’s county of residence, occupation, and primary coastal activities. Survey recipients were also asked to select from a list the top five marine-related topics that defined prior strategic plan themes (i.e., marine bio-technology, fisheries, aquaculture, seafood safety, coastal communities, ecosystem health, coastal hazards, and marine education). In addition, questionnaire recipients were asked to evaluate (on a scale of one to five) the importance of a series of listed outcomes that characterize priority planning themes. Last, survey recipients identified up to three priority themes and outcomes that they felt were particularly important and in need of resolution. (PDF contains 36 pages.)
Resumo:
In July 1974, we began a two-year baseline study of the Moss Landing Elkhorn Slough marine environment for Pacific Gas and Electric Company as mandated by the Coastal Commission. The original proposal included strong recommendations for more complete oceanographic studies and a third year of data collection. These further studies were not funded. This report is divided into three sections: oceanography, benthic invertebrate ecology and fish and zooplankton ecology. (PDF contains 480 pages)
Resumo:
(PDF contains 141 pages)
Resumo:
Pacific coastal bottlenose dolphins (Tursiops truncatus gilli) have apparently moved to Monterey Bay as a result of a shift north of their known range. Between 1983 and 1993, 417 sightings were reported off central California. Eighty-four boat-based surveys, between October 1990 and November 1993, resulted in the photo-identification of 68 uniquely marked individuals. School size ranged between 2 and 35 animals (mean = 16.60, S.D. = 7.72). Forty-three (63%) of the dolphins identified were previously photographed in the Southern California Bight before 1989. Jolly-Seber population estimates indicated an increase in the Monterey Bay population from 1990 to 1993. At least 13 of the photo-identified dolphins were present in Monterey Bay throughout the study period. All but two of the calculated coefficients of association were 0.35, indicating a strong bond among resident animals. The occurrence of an El Niño from January 1992 to the end of 1993 may have affected the number of animals present in the bay: mean school size was significantly greater during El Niño.