57 resultados para Climate signal


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In response to a growing body of research on projected climate change impacts to Washington State’s coastal areas, the Washington State Department of Natural Resources’ (DNR) Aquatic Resources Program (the Program) initiated a climate change preparedness effort in 2009 via the development of a Climate Change Adaptation Strategy (the Strategy)i. The Strategy answers the question “What are the next steps that the Program can take to begin preparing for and adapting to climate change impacts in Washington’s coastal areas?” by considering how projected climate change impacts may effect: (1) Washington’s state-owned aquatic landsii, (2) the Program’s management activities, and (3) DNR’s statutorily established guidelines for managing Washington’s state-owned aquatic lands for the benefit of the public. The Program manages Washington’s state-owned aquatic lands according to the guidelines set forth in Revised Code of Washington 79-105-030, which stipulates that DNR must manage state-owned aquatic lands in a manner which provides a balance of the following public benefits: (1) Encouraging direct public uses and access; (2) Fostering water-dependent uses; (3) Ensuring environmental protection; (4) Utilizing renewable resources. (RCW 79-105-030) The law also stipulates that generating revenue in a manner consistent with these four benefits is a public benefit (RCW 79-105-030). Many of the next steps identified in the Strategy build off of recommendations provided by earlier climate change preparation and adaptation efforts in Washington State, most notably those provided by the Preparation and Adaptation Working Group, which were convened by Washington State Executive Order 70-02 in 2007, and those made in the Washington Climate Change Impacts Assessment (Climate Impacts Group, 2009). (PDF contains 4 pages)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

How is climate change affecting our coastal environment? How can coastal communities adapt to sea level rise and increased storm risk? These questions have garnered tremendous interest from scientists and policy makers alike, as the dynamic coastal environment is particularly vulnerable to the impacts of climate change. Over half the world population lives and works in a coastal zone less than 120 miles wide, thereby being continuously affected by the changes in the coastal environment [6]. Housing markets are directly influenced by the physical processes that govern coastal systems. Beach towns like Oak Island in North Carolina (NC) face severe erosion, and the tax assesed value of one coastal property fell by 93% in 2007 [9]. With almost ninety percent of the sandy beaches in the US facing moderate to severe erosion [8], coastal communities often intervene to stabilize the shoreline and hold back the sea in order to protect coastal property and infrastructure. Beach nourishment, which is the process of rebuilding a beach by periodically replacing an eroding section of the beach with sand dredged from another location, is a policy for erosion control in many parts of the US Atlantic and Pacific coasts [3]. Beach nourishment projects in the United States are primarily federally funded and implemented by the Army Corps of Engineers (ACE) after a benefit-cost analysis. Benefits from beach nourishment include reduction in storm damage and recreational benefits from a wider beach. Costs would include the expected cost of construction, present value of periodic maintenance, and any external cost such as the environmental cost associated with a nourishment project (NOAA). Federal appropriations for nourishment totaled $787 million from 1995 to 2002 [10]. Human interventions to stabilize shorelines and physical coastal dynamics are strongly coupled. The value of the beach, in the form of storm protection and recreation amenities, is at least partly capitalized into property values. These beach values ultimately influence the benefit-cost analysis in support of shoreline stabilization policy, which, in turn, affects the shoreline dynamics. This paper explores the policy implications of this circularity. With a better understanding of the physical-economic feedbacks, policy makers can more effectively design climate change adaptation strategies. (PDF contains 4 pages)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coastal hazards such as flooding and erosion threaten many coastal communities and ecosystems. With documented increases in both storm frequency and intensity and projected acceleration of sea level rise, incorporating the impacts of climate change and variability into coastal vulnerability assessments is becoming a necessary, yet challenging task. We are developing an integrated approach to probabilistically incorporate the impacts of climate change into coastal vulnerability assessments via a multi-scale, multi-hazard methodology. By examining the combined hazards of episodic flooding/inundation and storm induced coastal change with chronic trends under a range of future climate change scenarios, a quantitative framework can be established to promote more sciencebased decision making in the coastal zone. Our focus here is on an initial application of our method in southern Oregon, United States. (PDF contains 5 pages)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coastal communities throughout the United States have dealt with the devastating effects of storms for centuries, however today’s threats are greater due to three factors. First, the population along the coastline has grown, and is projected to increase.i Additionally, past land use management decisions in the coastal zone have rarely led to the greatest protection from threats. Finally, climate change is predicted to affect coastal areas by accelerating current sea level rise rates and possibly increasing storm intensity.ii These factors compounded together mean that coastal communities are facing a very dangerous situation that threatens economies and human life. (PDF contains 4 pages)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Historical definitions of what determines whether one lives in a coastal area or not have varied over time. According to Culliton (1998), a “coastal county” is defined as a county with at least 15% of its total land area located within a nation’s coastal watershed. This emphasizes the land areas within which water flows into the ocean or Great Lakes, but may be better suited for ecosystems or water quality research (Crowell et al. 2007). Some Federal Emergency Management Agency (FEMA) documents suggest that “coastal” includes shoreline-adjacent coastal counties, and perhaps even counties impacted by flooding from coastal storms. An accurate definition of “coastal” is critical in this regard since FEMA uses such definitions to revise and modernize their Flood Insurance Rate Maps (Crowell et al. 2007). A recent map published by the National Oceanic and Atmospheric Administration’s (NOAA) Coastal Services Center for the Coastal Change Analysis Program shows that the “coastal” boundary covers the entire state of New York and Michigan, while nearly all of South Carolina is considered “coastal.” The definition of “coastal” one chooses can have major implications, including a simple count of coastal population and the influence of local or state coastal policies. There is, however, one aspect of defining what is “coastal” that has often been overlooked; using atmospheric long-term climate variables to define the inland extent of the coastal zone. This definition, which incorporates temperature, precipitation, wind speed, and relative humidity, is furthermore scalable and globally applicable - even in the face of shifting shorelines. A robust definition using common climate variables should condense the large broad definition often associated with “coastal” such that completely landlocked locations would no longer be considered “coastal.” Moreover, the resulting definition, “coastal climate” or “climatology of the coast”, will help coastal resource managers make better-informed decisions on a wide range of climatologically-influenced issues. The following sections outline the methodology employed to derive some new maps of coastal boundaries in the United States. (PDF contains 3 pages)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coastal storms, and the strong winds, heavy rains, and high seas that accompany them pose a serious threat to the lives and livelihoods of the peoples of the Pacific basin, from the tropics to the high latitudes. To reduce their vulnerability to the economic, social, and environmental risks associated with these phenomena (and correspondingly enhance their resiliency), decision-makers in coastal communities require timely access to accurate information that affords them an opportunity to plan and respond accordingly. This includes information about the potential for coastal flooding, inundation and erosion at time scales ranging from hours to years, as well as the longterm climatological context of this information. The Pacific Storms Climatology Project (PSCP) was formed in 2006 with the intent of improving scientific understanding of patterns and trends of storm frequency and intensity - “storminess”- and related impacts of these extreme events. The project is currently developing a suite of integrated information products that can be used by emergency managers, mitigation planners, government agencies and decision-makers in key sectors, including: water and natural resource management, agriculture and fisheries, transportation and communication, and recreation and tourism. The PSCP is exploring how the climate-related processes that govern extreme storm events are expressed within and between three primary thematic areas: heavy rains, strong winds, and high seas. To address these thematic areas, PSCP has focused on developing analyses of historical climate records collected throughout the Pacific region, and the integration of these climatological analyses with near-real time observations to put recent weather and climate events into a longer-term perspective.(PDF contains 4 pages)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Despite an increasing literary focus on climate change adaptation, the facilitation of this adaptation is occurring on a limited basis (Adger et al. 2007) .This limited basis is not necessarily due to inability; rather, a lack of comprehensive cost estimates of all options specifically hinders adaptation in vulnerable communities (Adger et al. 2007). Specifically the estimated cost of the climate change impact of sea-level rise is continually increasing due to both increasing rates and the resulting multiplicative impact of coastal erosion (Karl et al., 2009, Zhang et al., 2004) Based on the 2007 Intergovernmental Panel on Climate Change report, minority groups and small island nations have been identified within these vulnerable communities. Therefore the development of adaptation policies requires the engagement of these communities. State examples of sea-level rise adaptation through land use planning mechanisms such as land acquisition programs (New Jersey) and the establishment of rolling easements (Texas) are evidence that although obscured, adaptation opportunities are being acted upon (Easterling et al., 2004, Adger et al.2007). (PDF contains 4 pages)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As the impacts and potential of climate change are realized at the governance level, states are moving towards adaptation strategies that include greater regulatory restrictions on development within coastal zones. The purpose of this paper is to outline the impacts of existing and planned regulatory mechanisms on the Fifth Amendment to the United States Constitution, which prevents the government taking of private property for public use without just compensation. A short history of regulatory takings is explained, and the potential legal issues surrounding mitigation and adaptation measures for coastal communities are discussed. The goal is to gain an understanding of the legal issues that must be resolved by governments to effectively deal with regulatory takings claims as coastal mitigation and adaptation plans are implemented. (PDF contains 3 pages)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rising global temperatures threaten the survival of many plant and animal species. Having already risen at an unprecedented rate in the past century, temperatures are predicted to rise between 0.3 and 7.5C in North America over the next 100 years (Hawkes et al. 2007). Studies have documented the effects of climate warming on phenology (timing of seasonal activities), with observations of early arrival at breeding grounds, earlier ends to the reproductive season, and delayed autumnal migrations (Pike et al. 2006). In addition, for species not suited to the physiological demands of cold winter temperatures, increasing temperatures could shift tolerable habitats to higher latitudes (Hawkes et al. 2007). More directly, climate warming will impact thermally sensitive species like sea turtles, who exhibit temperature-dependent sexual determination. Temperatures in the middle third of the incubation period determine the sex of sea turtle offspring, with higher temperatures resulting in a greater abundance of female offspring. Consequently, increasing temperatures from climate warming would drastically change the offspring sex ratio (Hawkes et al. 2007). Of the seven extant species of sea turtles, three (leatherback, Kemp’s ridley, and hawksbill) are critically endangered, two (olive ridley and green) are endangered, and one (loggerhead) is threatened. Considering the predicted scenarios of climate warming and the already tenuous status of sea turtle populations, it is essential that efforts are made to understand how increasing temperatures may affect sea turtle populations and how these species might adapt in the face of such changes. In this analysis, I seek to identify the impact of changing climate conditions over the next 50 years on the availability of sea turtle nesting habitat in Florida given predicted changes in temperature and precipitation. I predict that future conditions in Florida will be less suitable for sea turtle nesting during the historic nesting season. This may imply that sea turtles will nest at a different time of year, in more northern latitudes, to a lesser extent, or possibly not at all. It seems likely that changes in temperature and precipitation patterns will alter the distribution of sea turtle nesting locations worldwide, provided that beaches where the conditions are suitable for nesting still exist. Hijmans and Graham (2006) evaluate a range of climate envelope models in terms of their ability to predict species distributions under climate change scenarios. Their results suggested that the choice of species distribution model is dependent on the specifics of each individual study. Fuller et al. (2008) used a maximum entropy approach to model the potential distribution of 11 species in the Arctic Coastal Plain of Alaska under a series of projected climate scenarios. Recently, Pike (in press) developed Maxent models to investigate the impacts of climate change on green sea turtle nest distribution and timing. In each of these studies, a set of environmental predictor variables (including climate variables), for which ‘current’ conditions are available and ‘future’ conditions have been projected, is used in conjunction with species occurrence data to map potential species distribution under the projected conditions. In this study, I will take a similar approach in mapping the potential sea turtle nesting habitat in Florida by developing a Maxent model based on environmental and climate data and projecting the model for future climate data. (PDF contains 5 pages)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There is an unequivocal scientific consensus that increases in greenhouse gases in the atmosphere drive warming temperatures of air and sea, and acidification of the world’s oceans from carbon dioxide absorbed by the oceans. These changes in turn can induce shifts in precipitation patterns, sea level rise, and more frequent and severe extreme weather events (e.g. storms and sea surge). All of these impacts are already being witnessed in the world’s coastal regions and are projected to intensify in years to come. Taken together, these impacts are likely to result in significant alteration of natural habitats and coastal ecosystems, and increased coastal hazards in low-lying areas. They can affect fishers, coastal communities and resource users, recreation and tourism, and coastal infrastructure. Approaches to planned adaptation to these impacts can be drawn from the lessons and good practices from global experience in Integrated Coastal Management (ICM). The recently published USAID Guidebook on Adapting to Coastal Climate Change (USAID 2009) is directed at practitioners, development planners, and coastal management professionals in developing countries. It offers approaches for assessing vulnerability to climate change and climate variability in communities and outlines how to develop and implement adaptation measures at the local and national levels. Six best practices for coastal adaptation are featured in the USAID Guidebook on Adapting to Coastal Climate Change and summarized in the following sections. (PDF contains 3 pages)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coastal managers need accessible, trusted, tailored resources to help them interpret climate information, identify vulnerabilities, and apply climate information to decisions about adaptation on regional and local levels. For decades, climate scientists have studied the impacts that short term natural climate variability and long term climate change will have on coastal systems. For example, recent estimates based on Intergovernmental Panel on Climate Change (IPCC) warming scenarios suggest that global sea levels may rise 0.5 to 1.4 meters above 1990 levels by 2100 (Rahmstorf 2007; Grinsted, Moore, and Jevrejeva 2009). Many low-lying coastal ecosystems and communities will experience more frequent salt water intrusion events, more frequent coastal flooding, and accelerated erosion rates before they experience significant inundation. These changes will affect the ways coastal managers make decisions, such as timing surface and groundwater withdrawals, replacing infrastructure, and planning for changing land use on local and regional levels. Despite the advantages, managers’ use of scientific information about climate variability and change remains limited in environmental decision-making (Dow and Carbone 2007). Traditional methods scientists use to disseminate climate information, like peer-reviewed journal articles and presentations at conferences, are inappropriate to fill decision-makers’ needs for applying accessible, relevant climate information to decision-making. General guides that help managers scope out vulnerabilities and risks are becoming more common; for example, Snover et al. (2007) outlines a basic process for local and state governments to assess climate change vulnerability and preparedness. However, there are few tools available to support more specific decision-making needs. A recent survey of coastal managers in California suggests that boundary institutions can help to fill the gaps between climate science and coastal decision-making community (Tribbia and Moser 2008). The National Sea Grant College Program, the National Oceanic and Atmospheric Administration's (NOAA) university-based program for supporting research and outreach on coastal resource use and conservation, is one such institution working to bridge these gaps through outreach. Over 80% of Sea Grant’s 32 programs are addressing climate issues, and over 60% of programs increased their climate outreach programming between 2006 and 2008 (National Sea Grant Office 2008). One way that Sea Grant is working to assist coastal decision-makers with using climate information is by developing effective methods for coastal climate extension. The purpose of this paper is to discuss climate extension methodologies on regional scales, using the Carolinas Coastal Climate Outreach Initiative (CCCOI) as an example of Sea Grant’s growing capacities for climate outreach and extension. (PDF contains 3 pages)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The chief objectives of this brief review are to collate and synthesise quantitative information on the temperature requirements of aquatic insects, and to identify species, and groups of species, that could be useful indicators of climate change and predictors of the ecological effects of change. It arose from the first phase of the Terrestrial Initiative in Global Environmental Research (TIGER), a five-year, NERC Community Programme on the role of the terrestrial biosphere in the science of global change. This phase involved the identification of criteria for selecting species suitable for the study of effects of projected climate change in the British Isles. Field and laboratory studies are reviewed, and criteria for selection of species for future research are suggested. The literature survey shows that no species of aquatic insect can be found to meet all three criteria, but information on the British stoneflies and their eggs already satisfies two of them.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Observations were made on crayfish burrows in five locations on the Great Ouse River. The burrow densities and the relative abundance of crayfish were observed. Also, laboratory experiments were carried out in order to study the characteristics and mechanisms of burrowing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Examination of 40 time series of multidisciplinary environmental variables from the Pacific Ocean and the Americas, collected in 1968 to 1984, demonstrated the remarkable consistency of a major climate-related, step-like change in 1976. To combine the 40 variables (e.g., air and water temperatures, Southern Oscillation, chlorophyll, geese, salmon, crabs, glaciers, atmospheric dust, coral, carbon dioxide, winds, ice cover, Bering Strait transport) into a single time series, standard variants of individual annual values (subtracting the mean and dividing by a standard deviation) were averaged. Analysis of the resulting time series showed that the single step in 1976, separating the 1968-1975 period from the 1977-1984 period, accounted for 89% of variance within the composite time series. Apparently, one of the Earth's large ecosystems occasionally undergoes large abrupt shifts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Climate change is amongst the most dreaded problems of the new millennium. Bangladesh is a coastal country bounded by Bay of Bengal on its southern part and here natural disasters are an ongoing part of human life. This paper discusses about the possible impact of climate change through tropical cyclones, storm surges, coastal erosion and sea level rise in the coastal community of Bangladesh and how they cope with these extreme events by the help of mangrove ecosystem. Both qualitative and quantitative discussions are made by collected data from different research work those are conducted in Bangladesh. Mangrove ecosystem provides both goods and services for coastal community, helps to improve livelihood options and protect them from natural disaster by providing variety of environmental support