876 resultados para Chinook salmon fisheries.
Resumo:
In February 1996 A Strategy for the Management of Salmon in England and Wales was launched by the National Rivers Authority. The strategy concentrates on four main objectives for the management of salmon fisheries in England and Wales: (i) Optimise the number of salmon returning to home water fisheries, (ii) Maintain and improve the fitness and diversity of salmon stocks, (iii) Optimise the total economic value of surplus stocks, (iv) Ensure necessary costs are met by beneficiaries. These four objectives will be addressed through local Salmon Action Plans (SAPs) which will be produced for each of the principle salmon rivers in England and Wales by the year 2001. A consultation report was produced for the River Ribble and released publicly in October 1999. This document determined an egg deposition figure of 8.5 million eggs for the Ribble, that would allow maximum gain from the net and rod fisheries; raised a number of issues which are thought to currently limit salmon production; identified actions which may be undertaken by the Environment Agency and other bodies to improve stocks. This action plan re-addresses the issues raised in the consultation document, taking into account the comments received, and also identifies areas of possible improvement in data gathering that would allow more accurate estimation of the spawning target and compliance in future years. The progress of this plan will be monitored and reported annually.
Resumo:
In February 1996 A Strategy for the Management of Salmon in England and Wales was launched by the National Rivers Authority. The strategy concentrates on four main objectives for the management of salmon fisheries in England and Wales: (i) Optimise the number of salmon returning to home water fisheries, (ii) Maintain and improve the fitness and diversity of salmon stocks, (iii) Optimise the total economic value of surplus stocks, (iv) Ensure necessary costs are met by beneficiaries. These four objectives will be addressed through local Salmon Action Plans (SAPs) which will be produced for each of the principle salmon rivers in England and Wales by the year 2001. This Salmon Action Plan for the River Ribble reviews the status of the stock and the fisheries, seeks to identify the main factors limiting performance, to draw up and cost a list of options to address these, and to consult with local interest groups.
Resumo:
In 1996 a Strategy for the Management of Salmon in England and Wales was launched by the National Rivers Authority setting out objectives for the management of Salmon fisheries. These objectives are to be met through local Salmon Action Plans which are to be produced for each of the 68 principal salmon rivers in England and Wales by December 2003. A consultation document was produced for the river Wyre and released publicly during October 2003. This document: • Determined an egg deposition figure of 1.27 million eggs which would allow maximum gain from the fisheries • Raised a number of issues which are though to limit existing salmon production. • Identified actions which may be undertaken by the Environment Agency and other bodies to improved stocks. The document looks at the issues in the consultation document and also highlights some important changes to historic egg deposition rates following further analysis of the data. Some of the major issues addressed in the plan are: • Severe low flows on specific tributaries • Reduced juvenile production caused by insufficient habitat. • Changes in flow regime resulting in the wash out of gravels and redds. • The impact of man made structures preventing access to suitable spawning areas, and preventing the downstream distribution of spawning gravels.
Resumo:
In February 1996, the National Salmon Management Strategy was launched by the Environment Agency's predecessor the National Rivers Authority (NRA, 1996). The strategy concentrates on four main objectives for the management of salmon fisheries in England and Wales. These are primarily aimed at securing the well being of the stock, but in doing so will improve catches and the associated economic returns to the fisheries. The four main objectives are : (i) Optimise the number of salmon returning to home water fisheries, (ii) Maintain and improve fitness and diversity of salmon stocks. (Hi) Optimise the total economic value of surplus stocks, (iv) Ensure necessary costs are met by beneficiaries
Resumo:
Variation at 14 microsatellite loci was examined in 34 chum salmon (Oncorhynchus keta) populations from Russia and evaluated for its use in the determination of population structure and stock composition in simulated mixed-stock fishery samples. The genetic differentiation index (Fst) over all populations and loci was 0.017, and individual locus values ranged from 0.003 to 0.054. Regional population structure was observed, and populations from Primorye, Sakhalin Island, and northeast Russia were the most distinct. Microsatellite variation provided evidence of a more fine-scale population structure than those that had previously been demonstrated with other genetic-based markers. Analysis of simulated mixed-stock samples indicated that accurate and precise regional estimates of stock composition were produced when the microsatellites were used to estimate stock compositions. Microsatellites can be used to determine stock composition in geographically separate Russian coastal chum salmon fisheries and provide a greater resolution of stock composition and population structure than that previously provided with other techniques.
Resumo:
The transition between freshwater and marine environments is associated with high mortality for juvenile anadromous salmonids, yet little is known about this critical period in many large rivers. To address this deficiency, we investigated the estuarine ecology of juvenile salmonids and their associated fish assemblage in open-water habitats of the lower Columbia River estuary during spring of 2007–10. For coho (Oncorhynchus kisutch), sockeye (O. nerka), chum (O. keta), and yearling (age 1.0) Chinook (O. tshawytscha) salmon, and steelhead (O. mykiss), we observed a consistent seasonal pattern characterized by extremely low abundances in mid-April, maximum abundances in May, and near absence by late June. Subyearling (age 0.0) Chinook salmon were most abundant in late June. Although we observed interannual variation in the presence, abundance, and size of juvenile salmonids, no single year was exceptional across all species-and-age classes. We estimated that >90% of juvenile Chinook and coho salmon and steelhead were of hatchery origin, a rate higher than previously reported. In contrast to juvenile salmonids, the abundance and composition of the greater estuarine fish assemblage, of which juvenile salmon were minor members, were extremely variable and likely responding to dynamic physical conditions in the estuary. Comparisons with studies conducted 3 decades earlier suggest striking changes in the estuarine fish assemblage—changes that have unknown but potentially important consequences for juvenile salmon in the Columbia River estuary.
Resumo:
Information is summarized on juvenile salmonid distribution, size, condition, growth, stock origin, and species and environmental associations from June and August 2000 GLOBEC cruises with particular emphasis on differences related to the regions north and south of Cape Blanco off Southern Oregon. Juvenile salmon were more abundant during the August cruise as compared to the June cruise and were mainly distributed northward from Cape Blanco. There were distinct differences in distribution patterns between salmon species: chinook salmon were found close inshore in cooler water all along the coast and coho salmon were rarely found south of Cape Blanco. Distance offshore and temperature were the dominant explanatory variables related to coho and chinook salmon distribution. The nekton assemblages differed significantly between cruises. The June cruise was dominated by juvenile rockfishes, rex sole, and sablefish, which were almost completely absent in August. The forage fish community during June comprised Pacific herring and whitebait smelt north of Cape Blanco and surf smelt south of Cape Blanco. The fish community in August was dominated by Pacific sardines and highly migratory pelagic species. Estimated growth rates of juvenile coho salmon were higher in the GLOBEC study area than in areas farther north. An unusually high percentage of coho salmon in the study area were precocious males. Significant differences in growth and condition of juvenile coho salmon indicated different oceanographic environments north and south of Cape Blanco. The condition index was higher in juvenile coho salmon to the north but no significant differences were found for yearling chinook salmon. Genetic mixed stock analysis indicated that during June, most of the Chinook salmon in our sample originated from rivers along the central coast of Oregon. In August, chinook salmon sampled south of Cape Blanco were largely from southern Oregon and northern California; whereas most chinook salmon north of Cape Blanco were from the Central Valley in California.
Resumo:
Table of Contents [pdf, 0.22 Mb] Executive Summary [pdf, 0.31 Mb] Report of the 2001 BASS/MODEL Workshop [pdf, 0.65 Mb] To review ecosystem models for the subarctic gyres Report of the 2001 MONITOR Workshop [pdf, 0.7 Mb] To review ecosystem models for the subarctic gyres Workshop presentations: Sonia D. Batten PICES Continuous Plankton Recorder pilot project Phillip R. Mundy GEM (Exxon Valdez Oil Spill Trustee Council`s "Gulf Ecosystem Monitoring" initiative) and U.S. GOOS plans in the North Pacific Ron McLaren and Brian O`Donnell A proposal for a North Pacific Action group of the international Data Buoy Cooperation Panel Gilberto Gaxiola-Castrol and Sila Najera-Martinez The Mexican oceanographic North Pacific program: IMECOCAL Sydney Levitus Building global ocean profile and plankton databases for scientific research Report of the 2001 REX Workshop [pdf, 1.73 Mb] On temporal variations in size-at-age for fish species in coastal areas around the Pacific Rim Workshop presentations: Brian J. Pyper, Randall M. Peterman, Michael F. Lapointe and Carl J. Walters [pdf, 0.33 Mb] Spatial patterns of covariation in size-at-age of British Columbia and Alaska sockeye salmon stocks and effects of abundance and ocean temperature R. Bruce MacFarlane, Steven Ralston, Chantell Royer and Elizabeth C. Norton [pdf, 0.4 Mb] Influences of the 1997-1998 El Niño and 1999 La Niña on juvenile Chinook salmon in the Gulf of the Farallones Olga S. Temnykh and Sergey L. Marchenko [pdf, 0.5 Mb] Variability of the pink salmon sizes in relation with abundance of Okhotsk Sea stocks Ludmila A. Chernoivanova, Alexander N. Vdoven and D.V. Antonenko [pdf, 0.3 Mb] The characteristic growth rate of herring in Peter the Great Bay (Japan/East Sea) Nikolay I. Naumenko [pdf, 0.5 Mb] Temporal variations in size-at-age of the western Bering Sea herring Evelyn D. Brown [pdf, 0.45 Mb] Effects of climate on Pacific herring, Clupea pallasii, in the northern Gulf of Alaska and Prince William Sound, Alaska Jake Schweigert, Fritz Funk, Ken Oda and Tom Moore [pdf, 0.6 Mb] Herring size-at-age variation in the North Pacific Ron W. Tanasichuk [pdf, 0.3 Mb] Implications of variation in euphausiid productivity for the growth, production and resilience of Pacific herring (Clupea pallasi) from the southwest coast of Vancouver Island Chikako Watanabe, Ahihiko Yatsu and Yoshiro Watanabe [pdf, 0.3 Mb] Changes in growth with fluctuation of chub mackerel abundance in the Pacific waters off central Japan from 1970 to 1997 Yoshiro Watanabe, Yoshiaki Hiyama, Chikako Watanabe and Shiro Takayana [pdf, 0.35 Mb] Inter-decadal fluctuations in length-at-age of Hokkaido-Sakhalin herring and Japanese sardine in the Sea of Japan Pavel A. Balykin and Alexander V. Buslov [pdf, 0.4 Mb] Long-term variability in length of walley pollock in the western Bering Sea and east Kamchtka Alexander A. Bonk [pdf, 0.4 Mb] Effect of population abundance increase on herring distribution in the western Bering Sea Sergey N. Tarasyuk [pdf, 0.4 Mb] Survival of yellowfin sole (Limanda aspera Pallas) in the northern part of the Tatar Strait (Sea of Japan) during the second half of the 20th century Report of the 2002 MODEL/REX Workshop [pdf, 1.2 Mb] To develop a marine ecosystem model of the North Pacific Ocean including pelagic fishes Summary and Overview [pdf, 0.4 Mb] Workshop presentations: Bernard A. Megrey, Kenny Rose, Francisco E. Werner, Robert A. Klumb and Douglas E. Hay [pdf, 0.47 Mb] A generalized fish bioenergetics/biomass model with an application to Pacific herring Robert A. Klumb [pdf, 0.34 Mb] Review of Clupeid biology with emphasis on energetics Douglas E. Hay [pdf, 0.47 Mb] Reflections of factors affecting size-at-age and strong year classes of herring in the North Pacific Shin-ichi Ito, Yutaka Kurita, Yoshioki Oozeki, Satoshi Suyama, Hiroya Sugisaki and Yongjin Tian [pdf, 0.34 Mb] Review for Pacific saury (Cololabis saira) study under the VENFISH project lexander V. Leonov and Gennady A. Kantakov [pdf, 0.34 Mb] Formalization of interactions between chemical and biological compartments in the mathematical model describing the transformation of nitrogen, phosphorus, silicon and carbon compounds Herring group report and model results [pdf, 0.34 Mb] Saury group report and model results [pdf, 0.46 Mb] Model experiments and hypotheses Recommendations [pdf, 0.4 Mb] Achievements and future steps Acknowledgements [pdf, 0.29 Mb] References [pdf, 0.32 Mb] Appendix 1. List of Participants [pdf, 0.32 Mb] Appendices 2-5. FORTRAN codes [pdf, 0.4 Mb] (Document pdf contains 182 pages)
Resumo:
At high stream discharges salmonid eggs can he displaced from the gravel and may drift downstream. It has been suggested that developing salmonid eggs may be killed by ”physical shock”, especially during the period before ”eyeing”. Similarly, a progress report by the International Pacific Salmon Fisheries Commission (1966) states that salmonid eggs are most sensitive during the period between fertilisation and blastopore closure. However, it would seem unlikely that this sensitivity actually begins at the time of fertilisation because, in nature, a period, perhaps measured in hours, must occur during which the newly-fertilised eggs are exposed to physical shock during the deposition of gravel over them as a result of the cutting activity of the female fish. The present report describes simple channel experiments designed to answer the two questions: 1. After release of eggs from the gravel, does the process of drifting downstream, which implies some physical shock through movement and impact, decrease the survival of salmonid eggs? 2. Is the survival rate-influenced by the stage of development of the eggs?
Resumo:
There is little doubt that both mammalian and teleost growth hormones can accelerate growth and increase food conversion efficiency in all commonly-reared species of salmonid fish. In those vertebrates that have been closely studied (predominantly mammals), the pituitary hormone somatotropin (GH or growth hormone) is a prime determinant of somatic growth. The hormone stimulates protein biosynthesis and tissue growth, enhances lipid utilization and lipid release from the adipose tissues (a protein-sparing effect) and suppresses the peripheral utilization of glucose. The present study is a prerequisite for future work on growth hormone physiology in salmonids and should contribute to our understanding of the mechanisms of growth suppression in stressed fish. Plasma growth hormone (GH) levels were measured in rainbow trout using a radioimmunoassay developed against chinook salmon growth hormone.
Resumo:
William Francis Thompson (1888–1965) was a preeminent fishery scientist of the early to mid twentieth century. Educated at Stanford University in California (B.A. 1911, Ph.D. 1930), Thompson conducted pioneering research on the Pacific halibut, Hippoglossus stenolepis, from 1914 to 1917 for the British Columbia Provincial Fisheries Department. He then directed marine fisheries research for the State of California from 1917 to 1924, was Director of Investigations for the International Fisheries Commission from 1924 to 1939, and Director of the International Pacific Salmon Fisheries Commission from 1937 to 1942. He was also Director of the School of Fisheries, University of Washing-ton, Seattle, from 1930 to 1947. Thompson was the founding director in 1947 of the Fisheries Research Institute at the University of Washington and served in that capacity until his retirement in 1958. He was a dominant figure in fisheries research of the Pacific Northwest and influenced a succession of fishery scientists with his yield-based analysis of fishery stocks, as opposed to studying the fishes’environment. Will Thompson was also a major figure in education, and many of his former students attained leadership positions in fisheries research and administration.
Resumo:
This is the Rivers Avon & Erme Salmon Action Plan Final document produced by the Environment Agency in 2004. The Rivers Avon and Erme Salmon Action Plan (SAP) has been produced after consideration of feedback from public consultation. The final plan provides a list of the agreed issues and actions for the next five years to maintain and improve the salmon stocks and fisheries of both rivers. Efforts have been made to identify possible sources of funding, partners and timescales. It indicates how the plan will be managed, including the process for reviewing stock status, issues, actions and progress. Low marine survival is currently a major factor limiting the numbers of salmon returning to spawn in both the Avon and the Erme. Actions to improve the accessibility of spawning areas and to maximise the productivity of spawning and nursery habitats are seen as priorities, which should help to offset the low marine survival. The quality of the information available to assess salmon stocks is recognised as a limiting factor in the management of salmon fisheries. The SAP aims also to promote long term collaboration between the Agency and other interested parties in managing the salmon stocks and fisheries of the Avon and the Erme.
Resumo:
This is the River Dart Salmon Action Plan Final document produced by the Environment Agency in 2003. This final Salmon Action Plan (SAP) for the River Dart catchment has been produced after consideration of feedback from external consultation. It provides a list of the agreed issues and actions for the next five years to maintain and improve the River Dart salmon stock. The low marine survival (likely to be below 10%) is possibly to be the main cause for the River Dart salmon stock non-compliance with its conservation limit. Actions protecting smolts and maximising spawning activity of returning adults are seen as priorities to contribute to mitigate the low marine survival. Also the lack of information on salmon stock and its habitat is recognised as one main factor limiting the better management of salmon fisheries. Efforts will be focused on gaining more knowledge and improving modelling techniques. The actions presented in this document are perceived as those required to address the important issues and factors limiting the salmon stock. This SAP aims also to promote long term collaboration between the Agency and other interested parties in managing the River Dart salmon stock and fisheries.
Resumo:
This is the River Exe Salmon Action Plan Final document produced by the Environment Agency in 2003. This final Salmon Action Plan (SAP) for the River Exe catchment has been produced after consideration of feedback from external consultation. The actions presented within this Salmon Action Plan clarify the important issues and factors currently limiting the salmon stock on the river. An attempt has been made to cost these actions, identify possible sources of funding and to provide a timescale for action. This SAP aims also to promote long term collaboration between the Agency and other interested parties in managing the River Exe salmon stock and fisheries. The River Exe salmon population is currently judged to be passing its Conservation Limit. However, its apparent declining trend in egg deposition in the recent years and the high uncertainty in its stock assessment suggest the following actions as priorities: actions promoting good land management, maximising salmon natural spawning activity and protecting smolts throughout the Exe catchment. Also, the lack of information on salmon stocks and its habitat quality and availability is recognised as the main factor limiting the better management of salmon fisheries. The actions presented in this document are perceived as those required to address the important issues and factors limiting the salmon stock.