44 resultados para Bellingshausen Sea, central axis of trough, outer shelf
Resumo:
The Deepwater Horizon (DWH) accident in the northern Gulf of Mexico occurred on April 20, 2010 at a water depth of 1525 meters, and a deep-sea plume was detected within one month. Oil contacted and persisted in parts of the bottom of the deep-sea in the Gulf of Mexico. As part of the response to the accident, monitoring cruises were deployed in fall 2010 to measure potential impacts on the two main soft-bottom benthic invertebrate groups: macrofauna and meiofauna. Sediment was collected using a multicorer so that samples for chemical, physical and biological analyses could be taken simultaneously and analyzed using multivariate methods. The footprint of the oil spill was identified by creating a new variable with principal components analysis where the first factor was indicative of the oil spill impacts and this new variable mapped in a geographic information system to identify the area of the oil spill footprint. The most severe relative reduction of faunal abundance and diversity extended to 3 km from the wellhead in all directions covering an area about 24 km2. Moderate impacts were observed up to 17 km towards the southwest and 8.5 km towards the northeast of the wellhead, covering an area 148 km2. Benthic effects were correlated to total petroleum hydrocarbon, polycyclic aromatic hydrocarbons and barium concentrations, and distance to the wellhead; but not distance to hydrocarbon seeps. Thus, benthic effects are more likely due to the oil spill, and not natural hydrocarbon seepage. Recovery rates in the deep sea are likely to be slow, on the order of decades or longer.
Resumo:
Various reef types worldwide have inconsistent relationships among fish assemblage parameters and benthic characteristics, thus there is a need to identify factors driving assemblage structure specific to each reef type and locale. Limestone ledges are known to be key habitats for bottom fish on the continental shelf of the southeastern USA, however, the specific factors that link them to fish assemblages have not been quantified. Bottom fishes and habitat characteristics on ledges were surveyed at a study site located centrally in the southeastern USA continental shelf. Species richness, diversity, abundance, and biomass of fish were higher at ledges than on flat bottom. Species richness, abundance, and biomass of fish were well explained by ledge variables including percent cover of sessile invertebrates, total height, and height of undercut recesses. Multivariate analyses based on biomass of individual species at ledges revealed two fish assemblages associated with four ledge types. One assemblage was associated with ledges that were tall, heavily colonized with sessile invertebrates, large in area, and did or did not have undercuts. The other assemblage was associated with ledges that were short, not undercut, smaller in area, and were or were not heavily colonized by invertebrates. Seafloor classification schemes presently used in the region do not adequately capture hard bottom diversity to identify the location and extent of essential fish habitats for ecological and fisheries purposes. Given that ledges cover only ∼1% to 5% of the southeastern USA continental shelf, they merit the highest levels of consideration in regional research, conservation, and management plans.
Resumo:
Our analyses of observer records reveal that abundance estimates are strongly influenced by the timing of longline operations in relation to dawn and dusk and soak time— the amount of time that baited hooks are available in the water. Catch data will underestimate the total mortality of several species because hooked animals are “lost at sea.” They fall off, are removed, or escape from the hook before the longline is retrieved. For example, longline segments with soak times of 20 hours were retrieved with fewer skipjack tuna and seabirds than segments with soak times of 5 hours. The mortality of some seabird species is up to 45% higher than previously estimated. The effects of soak time and timing vary considerably between species. Soak time and exposure to dusk periods have strong positive effects on the catch rates of many species. In particular, the catch rates of most shark and billfish species increase with soak time. At the end of longline retrieval, for example, expected catch rates for broadbill swordfish are four times those at the beginning of retrieval. Survival of the animal while it is hooked on the longline appears to be an important factor determining whether it is eventually brought on board the vessel. Catch rates of species that survive being hooked (e.g. blue shark) increase with soak time. In contrast, skipjack tuna and seabirds are usually dead at the time of retrieval. Their catch rates decline with time, perhaps because scavengers can easily remove hooked animals that are dead. The results of our study have important implications for fishery management and assessments that rely on longline catch data. A reduction in soak time since longlining commenced in the 1950s has introduced a systematic bias in estimates of mortality levels and abundance. The abundance of species like seabirds has been over-estimated in recent years. Simple modifications to procedures for data collection, such as recording the number of hooks retrieved without baits, would greatly improve mortality estimates.
Resumo:
As one facet of an effort to tie the pollen record of central Gulf of California deep cores to modern analogs, pollen was analyzed in the uppermost 150-200 years of varved core 7807-1410 taken nearby. Sampling at 2- to 8-year resolution yielded a noncomplacent record, suggesting pollen in these sediments may be a potential high resolution proxy record of short-term climatic events. The pollen spectrum as a whole matches that of upper-most DSDP Site 480 (means of all samples). Lack of a ratio or influx shift following damming of local rivers and a surplus of low-spine Compositae pollen relative to mainland sites support Baumgartner's theory that terrigenous influx to the site is largely aeolian and also suggest that a significant fraction of the pollen influx may come from Baja California.
Resumo:
In appreciation of the pressing need for coordinated research in various aspects of fishery technology and for the overall development of fisheries industries in India, the Ministry of Food and Agriculture had decided to set up the Central Institute of Fisheries Technology. The Institute was established in 1957 at Cochin (Ernakulam). The research work at the Institute including its sub-stations and units is carried out in two wings: Craft and Gear Wing and Processing Wing. The third unit, the Extension Information and Statistics Wing, renders a service by functioning as a liaison between the research laboratories and the industry.
Resumo:
The Craft and Gear Wing of the Central Institute of Fisheries Technology was established to develop the country's fishing boats and implements scientifically and systematically. The Wing was organized in the year 1957 as a part of the fisheries development schemes included under the Second Five Year Plan.
Resumo:
Making use of sea, as a place for dumping of wastes and other materials from human activities wasn’t forbidden before creation of the convention on the prevention of marine pollution by dumping of wastes and other matters (London Convention). Therefore, industrial countries, without any specific consideration, were dumping their wastes into the world’s seas. Many years and before the beginning of rapid development of industry, the great self- purification of seas were preventing some of discharging problems. But gradually, the increase of industrial development activities, exceeded the production of wastes and other matters, and this led to the misuse of world’s seas and oceans as a dump site. One of the most important consequences of 1972 Stockholm World Conference was to focusing world attention on threats have jeopardized marine environment balance. World countries` leaders committed in Stockholm to begin protecting the environment. Finally, this movement at marine environment section led to the creation of London Convention in the same year. London Convention was concluded for cooperating between countries at December 29, 1972 to promote effective control of all marine environment polluting resources and to prevent marine pollution by dumping wastes and other matters. Then it was opened for signature to other countries. At last, after 15 states signature, this convention was entered in to force at August 30.1975. Ratification and execution of London Convention resulted in coordinated performance of countries in marine waste management. Common actions with supports and cooperation of different international, regional, governmental and non-governmental organizations and agencies prevent marine pollution by dumping of wastes and other matters. Due to the importance of wastes in our marine and coastal areas, investigation of the performance of London Convention can identify the lack of regulations and lack of regulation supports about marine pollution prevention by dumping of wastes and other matters in Iran. Considering this issue, proper protection of seas will be achieved. London Convention has been studied here to achieve intended purposes. In first chapter, generalities about marine environment, including the importance and necessity of marine environment protection, with the focus on some internal and international resources of environmental law accompanying with marine pollution and its recourses, and finally, due to the study theme, dumping of wastes and other matters at seas with its impacts have been investigated .In the section of international measures, a brief history of marine pollution and marine environment international law with international law framework, exclusively for controlling of wastes and other material discharge at seas and oceans has been reviewed. In second chapter, obligations, amendments, and annexes of London Convention have been investigated and classified. The obligations have been categorized in to legal obligations and technical and organizational obligations. In former section, subject ,purpose, territory, exceptions, rights and duties of parties, convention amendments,… and in latter, special requirements for wastes assessment, determination of pollutants` permissible limit, site selection and type of discharge selection, design principles for marine environment quality monitoring program, and discharge license issuance mechanism have been studied. In third chapter, due to the examination of convention performance in Iran, the internal law system for marine environment conservation and its pollution has been mentioned in detail. Considering this, two issues have been compared .firstly, convention obligations with regional treaties that Iran as a party to them and secondly, Iranian internal law there of .Finally, common and different aspects of these issues have been determined. At last, recommendations and strategies for convention enforcement and conformity of its obligations with internal regulations have been presented. Furthermore, translation of convention English text has been reviewed and its protocol has been translated.
Resumo:
Dehram group includes Faraghan, Dalan and Kangan formations. Kangan formation ages lower terias. That is one of the important reservoir rocks of southern Iran and Persian Gulf. In this research Kangan formation is studied in two A and B wells. Based on 75 studies on thin section, four carbonate litho acies association A, B, C, D with 12 subfacies are identified. A lithofacies association includes 4 subfacies: A1, A2, A3 and A4. B lithofacies association consists of 3 subfacies: B1, B2 and B3. C lithofacies association consists of 3 subfacies: C1, C2, C3 and D lithofacies association includes 2 subfacies: D1 and D2. On the base of studies lithofacies association of Kangan formations are formed in 3 environments of: Tidal Flat, Lagoon and Barrier Shore Complex in a Carbonated Platform Ramp type. Diagenetic processes have effected this formation. The most important Diagenetic processes are: Cementation, Anhydritization, Micrization, Neomorphism, Bioturbation, Dissolution, Compaction, Dolomitization and Porosity. Sequence staratigraphy studies were performed base on the vertical and horizontal relationship of lithofacies association and well logging in gamma ray and sonic type that causes the identification of two sedimentary sequences: First sedimentary sequence includes: Transgressive System Tract (TST) and High Stand System Tract (HST). The lower boundary of this sequence is in Sequence Boundary 1 (SB1) which shows unconformities of Dalan and Kangan that are Permian-terias unconformities. The upper boundary is in Sequence Boundary 2 (SB2) type that is identified by carbonate facies associated by anhydrite nodular. Second sedimentary sequence includes: TST and HST. Lower and upper boundaries of these sequences are both in SB2 type. The lower and upper boundary is made of carbonate facies with anhydrite nodular.