61 resultados para Age and employment.
Resumo:
The Age and Growth Program at the Alaska Fisheries Science Center is tasked with providing age data in order to improve the basic understanding of the ecology and fisheries dynamics of Alaskan fish species. The primary focus of the Age and Growth Program is to estimate ages from otoliths and other calcified structures for age-structured modeling of commercially exploited stocks; however, the program has recently expanded its interests to include numerous studies on topics ranging from age estimate validation to the growth and life history of non-target species. Because so many applications rely upon age data and particularly upon assurances as to their accuracy and precision, the Age and Growth Program has developed this practical guide to document the age determination of key groundfish species from Alaskan waters. The main objective of this manual is to describe techniques specific to the age determination of commercially and ecologically important species studied by the Age and Growth Program. The manual also provides general background information on otolith morphology, dissection, and preparation, as well as descriptions of methods used to measure precision and accuracy of age estimates. This manual is intended not only as a reference for age readers at the AFSC and other laboratories, but also to give insight into the quality of age estimates to scientists who routinely use such data.
Resumo:
Age and growth of sailfish (Istiophorus platypterus) in waters off eastern Taiwan were examined from counts of growth rings on cross sections of the fourth spine of the first dorsal fin. Length and weight data and the dorsal fin spines were collected monthly at the fishing port of Shinkang (southeast of Taiwan) from July 1998 to August 1999. In total, 1166 dorsal fins were collected, of which 1135 (97%) (699 males and 436 females) were aged successfully. Trends in the monthly mean marginal increment ratio indicated that growth rings are formed once a year. Two methods were used to back-calculate the length of presumed ages, and growth was described by using the standard von Bertalanffy growth function and the Richards function. The most reasonable and conservative description of growth assumes that length-at-age follows the Richards function and that the relationship between spine radius and lower jaw fork length (LJFL) follows a power function. Growth differed significantly between the sexes; females grew faster and reached larger sizes than did males. The maximum sizes in our sample were 232 cm LJFL for female and 221 cm LJFL for male.
Resumo:
Patterns of distribution and growth were examined for young-of-the-year (YOY) greater amberjack (Seriola dumerili) associated with pelagic Sargassum in the NW Gulf of Mexico. Seriola dumerili were collected off Galveston, Texas, from May to July over a two-year period (2000 and 2001) in both inshore (<15 nautical miles [nmi]) and offshore zones (15−70 nmi). Relative abundance of YOY S. dumerili (32−210 mm standard length) from purse-seine collections peaked in May and June, and abundance was highest in the offshore zone. Ages of S. dumerili ranged from 39 to 150 days and hatching-date analysis indicated that the majority of spawning events occurred from February to April. Average daily growth rates of YOY S. dumerili for 2000 and 2001 were 1.65 mm/d and 2.00 mm/d, respectively. Intra-annual differences in growth were observed; the late-season (April) cohort experienced the fastest growth in both years. In addition, growth was significantly higher for S. dumerili collected from the offshore zone. Mortality was approximated by using catch-curve analysis, and the predicted instantaneous mortality rate (Z) of YOY S. dumerili was 0.0045 (0.45%/d).
Resumo:
Teeth of 71 estuarine dolphins (Sotalia guianensis) incidentally caught on the coast of Paraná State, southern Brazil, were used to estimate age. The oldest male and female dolphins were 29 and 30 years, respectively. The mean distance from the neonatal line to the end of the first growth layer group (GLG) was 622.4 ±19.1 μm (n=48). One or two accessory layers were observed between the neonatal line and the end of the first GLG. One of the accessory layers, which was not always present, was located at a mean of 248.9 ±32.6 μm (n=25) from the neonatal line, and its interpretation remains uncertain.The other layer, located at a mean of 419.6 ±44.6 μm (n=54) from the neonatal line, was always present and was first observed between 6.7 and 10.3 months of age. This accessory layer could be a record of weaning in this dolphin. Although no differences in age estimates were observed between teeth sectioned in the anterior-posterior and buccal-lingual planes, we recommend sectioning the teeth in the buccal-lingual plane in order to obtain on-center sections more easily. We also recommend not using teeth from the most anterior part of the mandibles for age estimation. The number of GLGs counted in those teeth was 50% less than the number of GLGs counted in the teeth from the median part of the mandible of the same animal. Although no significant difference (P>0.05) was found between the total lengths of adult male and female estuarine dolphins, we observed that males exhibited a second growth spurt around five years of age. This growth spurt would require that separate growth curves be calculated for the sexes. The asymptotic length (TL∞), k, and t0 obtained by the von Bertalanffy growth model were 177.3 cm, 0.66, and –1.23, respectively, for females and 159.6 cm, 2.02, and –0.38, respectively, for males up to five years, and 186.4 cm, 0.53 and –1.40, respectively, for males older than five years. The total weight (TW)/total length (TL) equations obtained for male and female estuarine dolphins were TW = 3.156 × 10−6 × TL 3.2836 (r=0.96), and TW = 8.974 × 10−5 × TL 2.6182 (r=0.95), respectively.
Resumo:
Age and growth estimates for the winter skate (Leucoraja ocellata) were estimated from vertebral band counts on 209 fish ranging in size from 145 to 940 mm total length (TL). An index of average percent error (IAPE) of 5.8% suggests that our aging method represents a precise approach to the age assessment of L. ocellata. Marginal increments were significantly different between months (Kruskal-Wallis P<0.001) and a distinct trend of increasing monthly increment growth began in July. Estimates of von Bertalanffy growth parameters suggest that females attain a slightly larger asymptotic TL (L∞=1374 mm) than males (L∞=1218 mm) and grow more slowly (k=0.059 and 0.074, respectively). The oldest ages obtained for the winter skate were 19 years for males and 18 years for females, which corresponded to total lengths of 932 mm and 940 mm, respectively. The results indicate that the winter skate exhibits the characteristics that have made other elasmobranch populations highly susceptible to exploitation by commercial fisheries.
Resumo:
Age and growth estimates for the blue shark (Prionace glauca) were derived from 411 vertebral centra and 43 tag-recaptured blue sharks collected in the North Atlantic, ranging in length from 49 to 312 cm fork length (FL). The vertebrae of two oxytetracycline-injected recaptured blue sharks support an annual spring deposition of growth bands in the vertebrae in sharks up to 192 cm FL. Males and females were aged to 16 and 15 years, respectively, and full maturity is attained by 5 years of age in both sexes. Both sexes grew similarly to age seven, when growth rates decreased in males and remained constant in females. Growth rates from tag-recaptured individuals agreed with those derived from vertebral annuli for smaller sharks but appeared overestimated for larger sharks. Von Bertalanffy growth parameters derived from vertebral length-at-age data are L∞ = 282 cm FL, K = 0.18, and t0 = –1.35 for males, and L∞ = 310 cm FL, K = 0.13, and t0 = −1.77 for females. The species grows faster and has a shorter life span than previously reported for these waters.
Resumo:
Otoliths from blue rockfish (Sebastes mystinus), were aged by using a combination of surface and break-and-burn methods. The samples were collected between 1978 and 1998 off central and northern California. Annual growth increments in the otoliths were validated by using edge analysis for females up to age 23 and for males to age 25.The first annual growth increment was identified by comparing the diameter of the otolith from fish known to be one year old collected in May (when translucent zone formation was completed) to the mean diameter of the first translucent zone in the otoliths from older fish. Our estimated maxi-mum ages of 44 years for males and 41 years for females were much older than those reported in previous studies. Von Bertalanffy growth models were developed for each sex. Females grew faster and reached larger maximum length than males. The growth models were similar to those generated in other studies of this species in southern and central California. Fish from northern and central California had similar maximum sizes, maximum ages, and growth model parameters.