82 resultados para 106-ZZ27
Resumo:
Ten growth models were fitted to age and growth data for spiny dogfish (Squalus acanthias) in the Gulf of Alaska. Previous studies of spiny dogfish growth have all fitted the t0 formulation of the von Bertalanffy model without examination of alternative models. Among the alternatives, we present a new two-phase von Bertalanffy growth model formulation with a logistically scaled k parameter and which estimates L0. A total of 1602 dogfish were aged from opportunistic collections with longline, rod and reel, set net, and trawling gear in the eastern and central Gulf of Alaska between 2004 and 2007. Ages were estimated from the median band count of three independent readings of the second dorsal spine plus the estimated number of worn bands for worn spines. Owing to a lack of small dogfish in the samples, lengths at age of small individuals were back-calculated from a subsample of 153 dogfish with unworn spines. The von Bertalanffy, two-parameter von Bertalanffy, two-phase von Bertalanffy, Gompertz, two-parameter Gompertz, and logistic models were fitted to length-at-age data for each sex separately, both with and without back-calculated lengths at age. The two-phase von Bertalanffy growth model produced the statistically best fit for both sexes of Gulf of Alaska spiny dogfish, resulting in L∞ = 87.2 and 102.5 cm and k= 0.106 and 0.058 for males and females, respectively.
Resumo:
Using data collected simultaneously from a trawl and a hydrophone, we found that temporal and spatial trends in densities of juvenile Atlantic croaker (Micropogonias undulatus) in the Neuse River estuary in North Carolina can be identified by monitoring their sound production. Multivariate analysis of covariance (MA NCOVA) revealed that catch per unit of effort (CPUE) of Atlantic croaker had a significant relationship with the dependent variables of sound level and peak frequency of Atlantic croaker calls. Tests of between-subject correspondence failed to detect relationships between CPUE and either of the call parameters, but statistical power was low. Williamson’s index of spatial overlap indicated that call detection rate (expressed by a 0–3 calling index) was correlated in time and space with Atlantic croaker CPUE. The correspondence between acoustic parameters and trawl catch rates varied by month and by habitat. In general, the calling index had a higher degree of overlap with this species’ density than did the received sound level of their calls. Classification and regression tree analysis identified calling index as the strongest correlate of CPUE. Passive acoustics has the potential to be an inexpensive means of identifying spatial and temporal trends in abundance for soniferous fish species.
Resumo:
Delayed mortality associated with discarded crabs and fishes has ordinarily been observed through tag and recovery studies or during prolonged holding in deck tanks, and there is need for a more efficient assessment method. Chionoecetes bairdi (Tanner crab) and C. opilio (snow crab) collected with bottom trawls in Bering Sea waters off Alaska were evaluated for reflexes and injuries and held onboard to track mortality. Presence or absence of six reflex actions was determined and combined to calculate a reflex impairment index for each species. Logistic regression revealed that reflex impairment provided an excellent predictor of delayed mortality in C. opilio (91% correct predictions). For C. bairdi, reflex impairment, along with injury score, resulted in 82.7% correct predictions of mortality, and reflex impairment alone resulted in 79.5% correct predictions. The relationships between reflex impairment score and mortality were independent of crab gender, size, and shell condition, and predicted mortality in crabs with no obvious external damage. These relationships provide substantial improvement over earlier predictors of mortality and will help to increase the scope and replication of fishing and handling experiments. The general approach of using reflex actions to predict mortality should be equally valuable for a wide range of crustacean species.
Resumo:
The community structure of fishes associated with pelagic Sargassum spp. and open water lacking Sargassum was examined during summer and fall cruises, 1999–2003, in the Gulf Stream off North Carolina. Significantly more individual fishes (n= 18,799), representing at least 80 species, were collected from samples containing Sargassum habitat, compared to 60 species (n=2706 individuals) collected from openwater habitat. The majority (96%) of fishes collected in both habitats were juveniles, and planehead filefish (Stephanolepis hispidus) dominated both habitats. Regardless of sampling time (day or night), Sargassum habitat yielded significantly higher numbers of individuals and species compared with open-water collections. Overall, fishes collected by neuston net tows from Sargassum habitat were significantly larger in length than fishes collected from open-water habitat with neuston nets. A significant positive, linear relationship existed between numbers of fishes and the quantity of Sargassum collected by neuston net. Underwater video recordings indicated a layered structure of fishes among and below the algae and that smaller fishes were more closely associated with the algae than larger fishes. Observations of schooling behaviors of filefishes (Monacanthidae), dolphinfish (Coryphaena hippurus), and jacks (Carangidae), and fish-jellyfish associations were also recorded with an underwater video camera. Our data indicate that Sargassum provides a substantial nursery habitat for many juvenile fishes off the U.S. southeast coast.