446 resultados para Marseille, Gulf of
Resumo:
Knowledge of the distribution and biology of the ragfish, Icosteus aenigmaticus, an aberrant deepwater perciform of the North Pacific Ocean, has increased slowly since the first description of the species in the 1880’s which was based on specimens retrieved from a fish monger’s table in San Francisco, Calif. As a historically rare, and subjectively unattractive appearing noncommercial species, ichthyologists have only studied ragfish from specimens caught and donated by fishermen or by the general public. Since 1958, I have accumulated catch records of >825 ragfish. Specimens were primarily from commercial fishermen and research personnel trawling for bottom and demersal species on the continental shelves of the eastern North Pacific Ocean, Gulf of Alaska, Bering Sea, and the western Pacific Ocean, as well as from gillnet fisheries for Pacific salmon, Oncorhynchus spp., in the north central Pacific Ocean. Available records came from four separate sources: 1) historical data based primarily on published and unpublished literature (1876–1990), 2) ragfish delivered fresh to Humboldt State University or records available from the California Department of Fish and Game of ragfish caught in northern California and southern Oregon bottom trawl fisheries (1950–99), 3) incidental catches of ragfish observed and recorded by scientific observers of the commercial fisheries of the eastern Pacific Ocean and catches in National Marine Fisheries Service trawl surveys studying these fisheries from 1976 to 1999, and 4) Japanese government research on nearshore fisheries of the northwestern Pacific Ocean (1950–99). Limited data on individual ragfish allowed mainly qualitative analysis, although some quantitative analysis could be made with ragfish data from northern California and southern Oregon. This paper includes a history of taxonomic and common names of the ragfish, types of fishing gear and other techniques recovering ragfish, a chronology of range extensions into the North Pacific and Bering Sea, reproductive biology of ragfish caught by trawl fisheries off northern California and southern Oregon, and topics dealing with early, juvenile, and adult life history, including age and growth, food habits, and ecology. Recommendations for future study are proposed, especially on the life history of juvenile ragfish (5–30 cm FL) which remains enigmatic.
Resumo:
During 1991–2000, the west-are additional mortalities that fueled the ern stock of Steller sea lions, Eumetopias decline. We tabulated the levels of reported jubatus, declined at 5.03% (SE = 0.25%) anthropogenic sources of mortality (sub- per year, statistically significant rates (P < sistence, incidental take in fisheries, and 0.10) in all but the eastern Aleutian Islands research), estimated another (illegal shoot-region. The greatest rates of declines oc-ing), then approximated levels of predation curred in the eastern and central Gulf of Alas-(killer whales and sharks). We attempted to ka and the western Aleutian Islands (> 8.2% partition the various sources of “additional” per year). Using a published correction mortalities as anthropogenic and as addifactor, we estimated the total non-pup pop-tional mortality including some predation. ulation size in Alaska of the western stock We classified 436 anthropogenic mortalities of Steller sea lions to be about 33,000 ani-and 769 anthropogenic plus some predation mals. Based on a published life table and mortalities as “mortality above replace-the current rate of decline, we estimate that ment”; this accounted for 26% and 46% of the total number of mortalities of non-pup the estimated total level of “mortality above Steller sea lions during 1991–2000 was replacement”, respectively. The remaining about 6,383 animals; of those, 4,718 (74%) mortality (74% and 54%, respectively) was are mortalities that would have occurred if not attributed to a specific cause and may be the population were stable, and 1,666 (26%) the result of nutritional stress.
Resumo:
A rigid grate was installed in a groundfish trawl to test its effectiveness in excluding Pacific halibut, Hippoglossus stenolepis, from commercial flatfish catches in the Gulf of Alaska. The grate was located ahead of the trawl codend to direct halibut toward an escape opening while allowing target species to pass through toward the codend. In an experimental fishery, the escape rate of halibut was estimated at 94%, while 72% of the Dover sole, Microstomas pacificus, 67% of the rex sole, Glyptocephalus zachirus, and 79% of the flathead sole, Hippoglossoides elassodon, were retained.
Resumo:
The marine invertebrates of North America received little attention before the arrival of Louis Agassiz in 1846. Agassiz and his students, particularly Addison E. Verrill and Richard Rathbun, and Agassiz's colleague Spencer F. Baird, provided the concept and stimulus for expanded investigations. Baird's U.S. Commission of Fish and Fisheries (1871) provided a principal means, especially through the U.S. Fisheries Steamer Albatross (1882). Rathbun participated in the first and third Albatrossscientific cruises in 1883-84 and published the fist accounts of Albatross parasitic copepods. The first report of Albatross planktonic copepods was published in 1895 by Wilhelm Giesbrecht of the Naples Zoological Station. Other collections were sent to the Norwegian Georg Ossian Sars. The American Charles Branch Wilson eventually added planktonic copepods to his extensive published works on the parasitic copepods from the Albatross. The Albatross copepods from San Francisco Bay were reported upon by Calvin Olin Esterly in 1924. Henry Bryant Bigelow accompanied the last scientific cruise of the Albatross in 1920. Bigelow incorporated the 1920 copepods into his definitive study of the plankton of the Gulf of Maine. The late Otohiko Tanaka, in 1969, published two reviews of Albatross copepods. Albatross copepods will long be worked and reworked. This great ship and her shipmates were mutually inspiring, and they inspire us still.
Resumo:
Mexico has an oyster industry of substantial size, ranking about sixth in the world. In 1993, among the top ten oyster producers, Korea, Japan, the United States, China, and France ranked ahead of Mexico, while the Philippines, Australia, Canada, and New Zealand trailed it (Fig. 1). On its east coast, the species landed is the eastern oyster, Crassostrea virginica, while on its west coast C. corteziensis, C. iridescens, and the Pacific oyster, C. gigas, are landed. During the last 10-15 years, annual production often was at least 50,000 t of shelled oysters, or nearly 1.5 million bushels (Anonymous, 1995), with the great preponderance (90%) coming from a series of lagoons connecting with the Gulf of Mexico along the east coast (Fig. 2) and the remainder produced on the west coast.
Resumo:
U.S. commercial vessels fishing in the Atlantic Ocean, Caribbean Sea, and the Gulf of Mexico have been subject to regulations limiting the landing of swordfish less than 25 kg whole weight since June 1991. The intent of those regulations was to reduce the mortality of immature swordfihs. Plots of fishing effort from 1990 to 1994 indicate that the regulations were effective in some areas. Fishing effort decreased after 1991 in the Venezuelan Basin, a swordfish nursery area. However, in areas close to the U.S. coastline, effort did not appear to shift away from areas where immature swordfish were discarded. To identify areas with high rates of discarding, plots were made showing areas where the number of discarded swordfish was equal to or greater than the number of fish landed.
Resumo:
The white shark, Carcharodon carcharias, is considered rare in the Gulf of Mexico; however, recent longline captures coupled with historical landings information suggest that the species occurs seasonally (winter-spring) within this region. We examined a total of seven adult and juvenile white sharks (185-472 em total length) captured in waters off the west coast of Florida. Commercial longline fisheries were monitored for white sharks during all months (1981-94), but this species was captured only from January to April. All white sharks were captured in continental shelf waters from 37 to 222 km off the west coast of Florida when sea surface temperatures ranged from 18.7° to 21.6°C. Depths at capture locations ranged from 20 to 164 m. Fishing gear typically used in Gulf of Mexico offshore fisheries may not be effective at capturing this species, and the apparent rarity of white sharks in this area may be, in part, a function of gear bias.
Resumo:
Observers were placed at offshore sites to monitor and protect sea turtles during explosive removals of oil and gas structures in the Gulf of Mexico off Louisiana and Texas. Data collected during more than 6,500 hours of monitoring at 106 structure removals in 1992 provided information on sea turtle distribution. Eighteen individuals were observed including 10 loggerheads, 2 leatherbacks, 1 hawksbill, and 5 unidentified sea turtles. The observation rate (individuals per monitoring hour) of sea turtles was about 30 times higher during aerial surveys than during day or night suiface surveys.
Resumo:
Management of the Texas penaeid shrimp fishery is aimed at increasing revenue from brown shrimp, Penaeus aztecus, landings and decreasing the level of discards. Since 1960 Texas has closed its territorial sea for 45-60 days during peak migration of brown shrimp to the Gulf of Mexico. In 1981 the closure was extended to 200 miles to include the U.S. Exclusive Economic Zone. Simulation modeling is used in this paper to estimate the changes in landings, revenue, costs, and economic rent attributable to the Texas closure. Four additional analyses were conducted to estimate the effects of closing the Gulf 1- to 4-fathom zone for 45 and 60 days, with and without effort redirected to inshore waters. Distributional impacts are analyzed in terms of costs, revenues, and rents, by vessel class, shrimp species, vessel owner, and crew.
Resumo:
Shrimp fishermen trawling in the Gulf of Mexico and south Atlantic inadvertently capture and kill sea turtles which are classified as endangered species. Recent legislation requires the use of a Turtle Excluder Device(TED) which, when in place in the shrimp trawl, reduces sea turtle mortality. The impact of the TED on shrimp production is not known. This intermediate analysis of the TED regulations using an annual firm level simulation model indicated that the average Texas shrimp vessel had a low probability of being an economic success before regulations were enacted. An assumption that the TED regulations resulted in decreased production aggravated this condition and the change in Ending Net Worth and Net Present Value of Ending Net Worth before and after a TED was placed in the net was significant at the 5 percent level. However, the difference in the Internal Rate of Return for the TED and non-TED simulations was not significant unless the TED caused a substantial change in catch. This analysis did not allow for interactions between the fishermen in the shrimp industry, an assumption which could significantly alter the impact of TED use on the catch and earnings of the individual shrimp vessel.
Resumo:
Skipjack tuna, Katsuwonus pelamis, and yellowfin tuna, Thunnus albacares, together comprise the most important component of Indian Ocean tuna catches. Catches of these species by Indian Ocean fisheries have been increasing over the last decade and totaled 262,300 metric tons (t) in 1986 (Fig. 1; Table 1). Skipjack tuna was the most important species at 32 percent of the total tuna catch in 1986; yellowfin tuna was the second most important at 25 percent. Skipjack tuna are found throughout the Indian Ocean from the Gulf of Arabia in the north to lat. 40°S (Fig. 2). Yellowfin tuna are also distributed throughout the ocean to about lat. 50�
Resumo:
The goal of this work is to examine the properties of recording mechanisms which are common to continuously recording high-resolution natural systems in which climatic signals are imprinted and preserved as proxy records. These systems produce seasonal structures as an indirect response to climatic variability over the annual cycle. We compare the proxy records from four different high-resolution systems: the Quelccaya ice cap of the Peruvian Andes; composite tree ring growth from southern California and the southwestern United States; and the marine varve sedimentation systems in the Santa Barbara basin (off California, United States) and in the Gulf of California, Mexico. An important focus of this work is to indicate how the interannual climatic signal is recorded in a variety of different natural systems with vastly different recording mechanisms and widely separated in space. These high-resolution records are the products of natural processes which should be comparable, to some degree, to human-engineered systems developed to transmit and record physical quantities. We therefore present a simple analogy of a data recording system as a heuristic model to provide some unifying concepts with which we may better understand the formation of the records. This analogy assumes special significance when we consider that natural proxy records are the principal means to extend our knowledge of climatic variability into the past, beyond the limits of instrumentally recorded data.
Resumo:
EXTRACT (SEE PDF FOR FULL ABSTRACT): Time-series flux variabilities of biogenic opal particles were measured during 1982-1986 at pelagic Station PAPA (50° N, 145° W) located just south of the Gulf of Alaska, eastern North Pacific. PARFLUX sediment traps with two week sampling increments were deployed at 1000 m and 3800 m in 4200 m deep water, yielding nearly continuous time-series flux records for four years. The flux data allowed us to examine interannual and seasonal variabilities of siliceous phytoplankton production as well as environmental signals retained within the siliceous shells, which can be used to reconstruct environments.
Resumo:
Western Atlantic synodontid species were studied as part of an ongoing effort to reanalyze Caribbean shorefish diversity. A neighbor-joining tree constructed from cytochrome c oxidase I (COI) data revealed 2 highly divergent genetic lineages within both Synodus intermedius (Agassiz, 1829) (Sand Diver) and S. foetens (Linnaeus, 1766) (Inshore Lizardfish). A new species, Synodus macrostigmus, is described for one of the S. intermedius lineages. Synodus macrostigmus and S. intermedius differ in number of lateral-line scales, caudal pigmentation, size of the scapular blotch, and shape of the anterior-nostril flap. Synodus macrostigmus and S. intermedius have overlapping geographic and depth distributions, but S. macrostigmus generally inhabits deeper water (>28 m) than does S. intermedius and is known only from coastal waters of the southeastern United States and the Gulf of Mexico, in contrast to those areas and the Caribbean for S. intermedius. Synodus bondi Fowler, 1939, is resurrected from the synonymy of S. foetens for one of the S. foetens genetic lineages. The 2 species differ in length and shape of the snout, number of anal-fin rays, and shape of the anterior-nostril flap. Synodus bondi and S. foetens co-occur in the central Caribbean, but S. bondi otherwise has a more southerly distribution than does S. foetens. Redescriptions are provided for S. intermedius, S. foetens, and S. bondi. Neotypes are designated for S. intermedius and S. foetens. A revised key to Synodus species in the western Atlantic is presented.
Resumo:
We provide morphological and molecular evidence to recognize a new species of skate from the North Pacific, Bathyraja panthera. We also resurrect the skate subgenus Arctoraja Ishiyama, confirming its monophyly and the validity of the subgenus. Arctoraja was previously recognized as a distinct subgenus of Breviraja and later synonymized with Bathyraja (family Rajidae). Although the nominal species of Arctoraja have all been considered synonyms of Bathyraja parmifera by various authors, on the basis of morphometric, meristic, chondrological, and molecular data we recognize four species, including the new species. Species of Arctoraja are distributed across the North Pacific Ocean and adjacent seas from southern Japan to British Columbia. Bathyraja parmifera is abundant in the eastern Bering Sea, Aleutian Islands, and northern Gulf of Alaska; B. smirnovi is a western Pacific species found in the Sea of Okhotsk and Sea of Japan; B. simoterus is restricted to waters around the northern and eastern coasts of Hokkaido, Japan; and the new species B. panthera is restricted to the western Aleutian Islands. Bathyraja panthera is diagnosed by its color pattern of light yellow blotches with black spotting on a greenish brown background, high thorn and vertebral counts, chondrological characters of the neurocranium and clasper, and a unique nucleotide sequence within the mitochondrial cytochrome oxidase gene. Furthermore, the species presently recognized as Bathyraja parmifera exhibits two haplotypes among specimens from Alaska, suggesting the possibility of a second, cryptic species.