371 resultados para Southeast Florida
Resumo:
We examined 536 permit (Trachinotus falcatus, 65–916 mm FL) collected from the waters of Florida Keys and from the Tampa Bay area on Florida’s Gulf coast to describe their growth and reproduction.Among permit that we sexed, females ranged from 266 to 916 mm in length (mean=617) and males ranged from 274 to 855 mm (mean=601). Ages of 297 permit ranging from 102 to 900 mm FL were estimated from thin-sectioned otoliths (sagittae). The large proportion of otoliths with an annulus on the margin and an otolith from an OTC-injected fish suggested that a single annulus was formed each year during late spring or early summer.Permit reach a maximum age of at least 23 years.Permit grew rapidly until an age of about five years, and then growth slowed considerably. Male and female von Bertalanffy growth models were not significantly different, and the sexes-combined growth model was FL=753.1(1–e –0.348(Age+0.585)). Gonad development was seasonal, and spawning occurred during late spring and summer over artificial and natural reefs at depths of 10–30 m. Ovaries that contained oocytes in the final stages of oocyte maturation or postovulatory follicles were found during May–July. We estimated that 50% of the females in the population had reached sexual maturity by 547 mm and an age of 3.1 years and that 50% of the males in the population had reached sexual maturity by 486 mm and an age of 2.3 years. Because Florida regulations restrict the maximum size of permit caught in recreational and commercial fisheries to 20-inch (508-mm), most fish harvested are sexually immature. With the current size selectivity of the fishery, the spawning stock biomass of permit could decrease quickly in response to moderate levels of fishing mortality; thus, the regulations in place in Florida to restrict harvest levels appear to be justified.
Resumo:
Two bycatch reduction devices (BRDs)—the extended mesh funnel (EMF) and the Florida fisheye (FFE)—were evaluated in otter trawls with net mouth circumferences of 14 m, 17 m, and 20 m and total net areas of 45 m2. Each test net was towed 20 times in parallel with a control net that had the same dimensions and configuration but no BRD. Both BRDs were tested at night during fall 1996 and winter 1997 in Tampa Bay, Florida. Usually, the bycatch was composed principally of finfish (44 species were captured); horseshoe crabs and blue crabs seasonally predominated in some trawls. Ten finfish species composed 92% of the total finfish catch; commercially or recreationally valuable species accounted for 7% of the catch. Mean finfish size in the BRD-equipped nets was usually slightly smaller than that in the control nets. Compared with the corresponding control nets, both biomass and number of finfish were almost always less in the BRD-equipped nets but neither shrimp number nor biomass were significantly reduced. The differences in proportions of both shrimp and finfish catch between the BRD-equipped and control nets varied between seasons and among net sizes, and differences in finfish catch were specific for each BRD type and season. In winter, shrimp catch was highest and size range of shrimp was greater than in fall. Season-specific differences in shrimp catch among the BRD types occurred only in the 14-m, EMF nets. Finfish bycatch species composition was also highly seasonal; each species was captured mainly during only one season. However, regardless of the finfish composition, the shrimp catch was relatively constant. In part as a result of this study, the State of Florida now requires the use of BRDs in state waters.
Resumo:
The goal of our study was to understand the spatial and temporal variation in spawning and settlement of gray snapper (Lutjanus griseus) along the West Florida shelf (WFS). Juvenile gray snapper were collected over two consecutive years from seagrass meadows with a benthic scrape and otter trawl. Spawning, settlement, and growth patterns were compared across three sampling regions (Panhandle, Big bend, and Southwest) by using otolith microstructure. Histology of adult gonads was also used for an independent estimate of spawning time. Daily growth increments were visible in the lapilli of snapper 11–150 mm standard length; ages ranged from 38 to 229 days and estimated average planktonic larval duration was 25 days. Estimated growth rates ranged from 0.60 to 1.02 mm/d and did not differ among the three sampling regions, but did differ across sampling years. Back-calculated fertilization dates from otoliths indicated that juveniles in the Panhandle and Big Bend were mainly summer spawned fish, whereas Southwest juveniles had winter and summer fertilization dates. Settlement occurred during summer both years and in the winter of 1997 for the southern portion of the WFS. Moon phase did not appear to be strongly correlated with fertilization or settlement. Histological samples of gonads from adults collected near the juvenile sampling areas indicated a summer spawning period.
Resumo:
A total of 1006 king mackerel (Scomberomorus cavalla) representing 20 discrete samples collected between 1996 and 1998 along the east (Atlantic) and west (Gulf) coasts of Florida and the Florida Keys were assayed for allelic variation at seven nuclear-encoded microsatellites. No significant deviations from Hardy-Weinberg equilibrium expectations were found for six of the microsatellites, and genotypes at all microsatellites were independent. Allele distributions at each microsatellite were independent of sex and age of individuals. Homogeneity tests of spatial distributions of alleles at the microsatellites revealed two weakly divergent “genetic” subpopulations or stocks of king mackerel in Florida waters—one along the Atlantic coast and one along the Gulf coast. Homogeneity tests of allele distributions when samples were pooled along seasonal (temporal) boundaries, consistent with the temporal boundaries used currently for stock assessment and allocation of the king mackerel resource, were nonsignificant. The degree of genetic divergence between the two “genetic” stocks was small: on average, only 0.19% of the total genetic variance across all samples assayed occurred between the two regions. Cluster analysis, assignment tests, and spatial autocorrelation analysis did not generate patterns that were consistent with either geographic or spatial-temporal boundaries. King mackerel sampled from the Florida Keys could not be assigned unequivocally to either “genetic” stock. The genetic data were not consistent with current spatial-temporal boundaries employed in stock assessment and allocation of the king mackerel resource. The genetic differences between king mackerel in the Atlantic versus those in the Gulf most likely stem from reduced gene flow (migration) between the Atlantic and Gulf in relation to gene flow (migration) along the Atlantic and Gulf coasts of peninsular Florida. This difference is consistent with findings for other marine fishes where data indicate that the southern Florida peninsula serves (or has served) as a biogeographic boundary.
Resumo:
Loggerhead sea turtles (Caretta caretta) are migratory, long-lived, and slow maturing. They are difficult to study because they are seen rarely and their habitats range over vast stretches of the ocean. Movements of immature turtles between pelagic and coastal developmental habitats are particularly difficult to investigate because of inadequate tagging technologies and the difficulty in capturing significant numbers of turtles at sea. However, genetic markers found in mitochondrial DNA (mtDNA) provide a basis for predicting the origin of juvenile turtles in developmental habitats. Mixed stock analysis was used to determine which nesting populations were contributing individuals to a foraging aggregation of immature loggerhead turtles (mean 63.3 cm straight carapace length [SCL]) captured in coastal waters off Hutchinson Island, Florida. The results indicated that at least three different western Atlantic loggerhead sea turtle subpopulations contribute to this group: south Florida (69%), Mexico (20%), and northeast Florida-North Carolina (10%). The conservation and management of these immature sea turtles is complicated by their multinational genetic demographics.
Resumo:
The bays and estuaries of the southeast United States coast generally are thought to serve as nursery areas for various species of coastal sharks, where juvenile sharks find abundant food and are less exposed to predation by larger sharks. Because these areas typically support substantial commercial and recreational fisheries, fishing mortality of sharks in the nurseries particularly by bycatch, may be significant. This two-year project assessed the relative importance of two estuaries of the southwest Florida Gulf coast, Tampa Bay and Charlotte Harbor/Pine Island Sound, as shark nursery areas, and examined potential fishing mortality of these young sharks in the nurseries.