401 resultados para Serial number
Resumo:
This study tests the hypothesis that climate change, through its rice productivity impacts, induces out-migration in the Philippines. Results show that climate change effects such as increasing night time temperature and extreme rainfall pattern, by way of reduction in rice yield and farm revenues, significantly increases the number of Overseas Filipino Workers. Findings also show that overseas migration of female workers is more sensitive to climate and rice productivity changes compared to male overseas migration. However, unlike overseas migration, the reduction in yield and farm revenues act as a constraint to domestic migration.
Resumo:
With current and anticipated increases in magnitude of extreme weather events and a declining consistency in weather patterns, particularly challenging for agriculture, there has been a growing interest in weather index-based insurance (IBI) schemes in Bangladesh. A number of weather index-based insurance products have already been tested and applied across Asia and Africa, with varying degrees of success, as a mechanism to improve livelihood security by enabling vulnerable populations to transfer risk associated with climate change, extreme weather events and other hazards. In the process, these efforts have generated important new knowledge on how these schemes can be designed and implemented for optimal results. However, the practice of index-based insurance is still limited in Bangladesh, and the experience and knowledge generated by the different stakeholders involved needs to be better communicated.
Resumo:
This book is a modest attempt at identifying Sunamganj haor fish species, especially in areas falling under the Sunamganj Community Based Resource Management Project (CBRMP). It contains a total of 126 fish species from 39 families found in the Sunamganj haor area. CBRMP has promoted community based fisheries management approaches that, along with their livelihoods focus, are helping to preserve and enhance natural fish stocks in the hoar basin. WorldFish support to LGED involves a number of areas including monitoring the impacts of CBRMP on fish catch, bio-diversity and livelihoods.
Resumo:
The genus Sebastes consists of over 100 fish species, all of which are viviparous and long-lived. Previous studies have presented schemes on the reproductive biology of a single targeted species of the genus Sebastes, but all appear to possess a similar reproductive biology as evidenced by this and other studies. This atlas stages major events during spermatogenesis, oogenesis, and embryogenesis, including atresia, in six species of Sebastes (S. alutus, S. elongatus, S. helvomaculatus, S. polyspinis, S. proriger, and S. zacentrus). Our study suggests that the male reproductive cycle of Sebastes is characterized by 11 phases of testicular development, with 10 stages of sperm development and 1 stage of spermatozoa atresia. Ovarian development was divided into 12 phases, with 10 stages of oocyte development, 1 stage of embryonic development, and 1 stage of oocyte atresia. Embryonic development up to parturition was divided into 33 stages following the research of Yamada and Kusakari (1991). Reproductive development of all six species examined followed the developmental classifications listed above which may apply to all species of Sebastes regardless of the number of broods produced annually. Multiple brooders vary in that not all ova are fertilized and progress to embryos; a proportion of ova are arrested at the pre-vitellogenic stage. Reproductive stage examples shown in this atlas use S. elongates for spermatic development, S. proriger for oocyte development, and S. alutus for embryological development, because opportunistic sampling only permitted complete analysis of each respective developmental phase for those species. The results of this study and the proposed reproductive phases complement the recommended scheme submitted by Brown-Peterson et al. (2011), who call for a standardization of terminology for describing reproductive development of fishes.
Resumo:
Prior to Pietsch’s (1993) revision of the genus Triglops, identification of their larvae was difficult; six species co-occur in the eastern North Pacific Ocean and Bering Sea and three co-occur in the western North Atlantic Ocean. We examined larvae from collections of the Alaska Fisheries Science Center and Atlantic Reference Centre and used updated meristic data, pigment patterns, and morphological characters to identify larvae of Triglops forficatus, T. macellus, T. murrayi, T. nybelini, T. pingeli, and T. scepticus; larvae of T. metopias, T. dorothy, T. jordani, and T. xenostethus have yet to be identified and are thus not included in this paper. Larval Triglops are characterized by a high myomere count (42–54), heavy dorsolateral pigmentation on the gut, and a pointed snout. Among species co-occurring in the eastern North Pacific Ocean, T. forficatus, T. macellus, and T. pingeli larvae are distinguished from each other by meristic counts and presence or absence of a series of postanal ventral melanophores. Triglops scepticus is differentiated from other eastern North Pacific Ocean larvae by having 0–3 postanal ventral melanophores, a large eye, and a large body depth. Among species co-occurring in the western North Atlantic Ocean, T. murrayi and T. pingeli larvae are distinguished from each other by meristic counts (vertebrae, dorsal-fin rays, and anal-fin rays once formed), number of postanal ventral melanophores, and first appearance and size of head spines. Triglops nybelini is distinguished from T. murrayi and T. pingeli by a large eye, pigment on the lateral line and dorsal midline in flexion larvae, and a greater number of dorsal-fin rays and pectoral-fin rays once formed.
Resumo:
The National Marine Fisheries Service (NMFS) is dedicated to the stewardship of living marine resources (LMR’s). This is accomplished through science-based conservation and management, and the promotion of healthy ecosystems. As a steward, NMFS has an obligation to conserve, protect, and manage these resources in a way that ensures their continuation as functioning components of healthy marine ecosystems, affords economic opportunities, and enhances the quality of life for the American public. In addition to its responsibilities within the U.S. Exclusive Economic Zone (EEZ), NMFS plays a supportive and advisory role in the management of LMR’s in the coastal areas under state jurisdiction and provides scientific and policy leadership in the international arena. NMFS also implements international measures for the conservation and management of LMR’s, as appropriate.NMFS receives its stewardship responsibilities under a number of Federal laws. These include the Nation’s primary fisheries law, the Magnuson Fishery Conservation and Management Act. This law was first passed in 1976, later reauthorized as the Magnuson-Stevens Fishery Conservation and Management Act in 1996, and reauthorized again on 12 January 2007 as the Magnuson-Stevens Fishery Conservation and Management Reauthorization Act (MSRA). The MSRA mandates strong action to conserve and manage fishery resources and requires NMFS to end overfishing by 2010 in all U.S. commercial and recreational fisheries, rebuild all overfished stocks, and conserve essential fish habitat.
Resumo:
The mission of NOAA’s National Marine Sanctuary Program (NMSP) is to serve as the trustee for a system of marine protected areas, to conserve, protect, and enhance their biodiversity, ecological integrity, and cultural legacy while facilitating compatible uses. Since 1972, thirteen National Marine Sanctuaries, representing a wide variety of ocean environments, have been established, each with management goals tuned to their unique diversity. Extending from Cape Ann to Cape Cod across the mouth of Massachusetts Bay, Stellwagen Bank National Marine Sanctuary (NMS) encompasses 2,181 square kilometers of highly productive, diverse, and culturally unique Federal waters. As a result of its varied seafloor topography, oceanographic conditions, and high primary productivity, Stellwagen Bank NMS is utilized by diverse assemblages of seabirds, marine mammals, invertebrates, and fish species, as well as containing a number of maritime heritage resources. Furthermore, it is a region of cultural significance, highlighted by the recent discovery of several historic shipwrecks. Officially designated in 1992, Stellwagen Bank became the Nation’s twelfth National Marine Sanctuary in order to protect these and other unique biological, geological, oceanographic, and cultural features of the region. The Stellwagen Bank NMS is in the midst of its first management plan review since designation. The management plan review process, required by law, is designed to evaluate, enhance, and guide the development of future research efforts, education and outreach, and the management approaches used by Sanctuaries. Given the ecological and physical complexity of Stellwagen Bank NMS, burgeoning anthropogenic impacts to the region, and competing human and biological uses, the review process was challenged to assimilate and analyze the wealth of existing scientific knowledge in a framework which could enhance management decision-making. Unquestionably, the Gulf of Maine, Massachusetts Bay, and Stellwagen Bank-proper are extremely well studied systems, and in many regards, the scientific information available greatly exceeds that which is available for other Sanctuaries. However, the propensity of scientific information reinforces the need to utilize a comprehensive analytical approach to synthesize and explore linkages between disparate information on physical, biological, and chemical processes, while identifying topics needing further study. Given this requirement, a partnership was established between NOAA’s National Marine Sanctuary Program (NMSP) and the National Centers for Coastal Ocean Science (NCCOS) so as to leverage existing NOAA technical expertise to assist the Sanctuary in developing additional ecological assessment products which would benefit the management plan review process.
Resumo:
The offshore shelf and canyon habitats of the OCNMS are areas of high primary productivity and biodiversity that support extensive groundfish fisheries. Recent acoustic surveys conducted in these waters have indicated the presence of hard-bottom substrates believed to harbor unique deep-sea coral and sponge assemblages. Such fauna are often associated with shallow tropical waters, however an increasing number of studies around the world have recorded them in deeper, cold-water habitats in both northern and southern latitudes. These habitats are of tremendous value as sites of recruitment for commercially important fishes. Yet, ironically, studies have shown how the gear used in offshore demersal fishing, as well as other commercial operations on the seafloor, can cause severe physical disturbances to resident benthic fauna. Due to their exposed structure, slow growth and recruitment rates, and long life spans, deep-sea corals and sponges may be especially vulnerable to such disturbances, requiring very long periods to recover. Potential effects of fishing and other commercial operations in such critical habitats, and the need to define appropriate strategies for the protection of these resources, have been identified as a high-priority management issue for the sanctuary.
Resumo:
The assessment of emerging risks in the aquatic environment is a major concern and focus of environmental science (Daughton and Ternes, 1999). One significant class of chemicals that has received relatively little attention until recently are the human use pharmaceuticals. In 2004, an estimated 2.6 billion prescriptions were written for the top 300 pharmaceuticals in the U.S. (RxList, 2005). Mellon et al. (2001) estimated that 1.4 million kg of antimicrobials are used in human medicine every year. The use of pharmaceuticals is also estimated to be on par with agrochemicals (Daughton and Ternes, 1999). Unlike agrochemicals (e.g., pesticides) which tend to be delivered to the environment in seasonal pulses, pharmaceuticals are continuously released through the use/excretion and disposal of these chemicals, which may produce the same exposure potential as truly persistent pollutants. Human use pharmaceuticals can enter the aquatic environment through a number of pathways, although the main one is thought to be via ingestion and subsequent excretion by humans (Thomas and Hilton, 2004). Unused pharmaceuticals are typically flushed down the drain or wind up in landfills (Jones et al. 2001).
Resumo:
This CD contains summary data of bottlenose dolphins stranded in South Carolina using a Geographical Information System (GIS) and contains two published manuscripts in .pdf files. The intent of this CD is to provide data on bottlenose dolphin strandings in South Carolina to marine mammal researchers and managers. This CD is an accumulation of 14 years of stranding data collected through the collaborations of the National Ocean Service, Center for Coastal Environmental Health and Biomolecular Research (CCEHBR), the South Carolina Department of Natural Resources, and numerous volunteers and veterinarians that comprised the South Carolina Marine Mammal Stranding Network. Spatial and temporal information can be visually represented on maps using GIS. For this CD, maps were created to show relationships of stranding densities with land use, human population density, human interaction with dolphins, high geographical regions of live strandings, and seasonal changes. Point maps were also created to show individual strandings within South Carolina. In summary, spatial analysis revealed higher densities of bottlenose dolphin strandings in Charleston and Beaufort Counties, which consist of urban land with agricultural input. This trend was positively correlated with higher human population levels in these coastal counties as compared with other coastal counties. However, spatial analysis revealed that certain areas within a county may have low human population levels but high stranding density, suggesting that the level of effort to respond to strandings is not necessarily positively correlated with the density of strandings in South Carolina. Temporal analysis revealed a significantly higher density of bottlenose dolphin strandings in the northern portion of the State in the fall, mostly due to an increase of neonate strandings. On a finer geographic scale, seasonal stranding densities may fluctuate depending on the region of interest. Charleston Harbor had the highest density of live bottlenose dolphin strandings compared to the rest of the State. This was due in large part to the number of live dolphin entanglements in the crab pot fishery, the largest source of fishery-related mortality for bottlenose dolphins in South Carolina (Burdett and McFee 2004). Spatial density calculations also revealed that Charleston and Beaufort accounted for the majority of dolphins that were involved with human activities. 1
Resumo:
There have been numerous studies on various mammalian species regarding vascular changes in uterine arteries elucidating the effects of parity. In equids, vascular changes of uterine arteries have been demonstrated to occur in uniparous and multiparous mares. The severity of these arteriole changes suggests a link to previous pregnancies. Differences in the number or range of pregnancies can be ascertained through microscopic evaluation of elastin deposition in the arterioles, perivascular fibrosis, and stromal cellularity. There has been little, if any, work performed on parity in the bottlenose dolphin (Tursiops truncatus). The objective of this preliminary study was to determine the feasibility of detecting similar vascular changes in the endometrium of known-aged female bottlenose dolphins to assess parity. Archived formalin fixed samples of uterus were obtained from nine bottlenose dolphins with known age and parity. Four slides were made from each sample and individually stained with four different techniques. From our small sample pool, it appears that uteri from nulliparous animals do not develop perivascular fibrosis. Parous uteri developed perivascular fibrosis and arteriolar elastosis. These changes agree with our expectations that some degeneration (elastosis) and compensation (fibrosis) occurs as a result of uterine expansion of pregnancy. The assessment of this technique for use in bottlenose dolphins would provide an important tool in the determination of the reproductive success of dolphin populations, identify individuals who are sexually mature but nulliparous, which could indicate reproductive dysfunction or increased calving intervals, and increase our knowledge on the role contaminants play in reproductive dysfunction.
Resumo:
Since 2001, NOAA National Centers for Coastal Ocean Science (NCCOS), Center for Coastal Monitoring and Assessment’s (CCMA) Biogeography Branch (BB) has been working with federal and territorial partners to characterize, monitor, and assess the status of the marine environment across the U.S. Virgin Islands (USVI). At the request of the St. Thomas Fisherman’s Association (STFA) and NOAA Marine Debris Program, CCMA BB developed new partnerships and novel technologies to scientifically assess the threat from derelict fish traps (DFTs). Traps are the predominant gear used for finfish and lobster harvesting in St. Thomas and St. John. Natural phenomena (ground swells, hurricanes) and increasing competition for space by numerous user groups have generated concern about increasing trap loss and the possible ecological, as well as economic, ramifications. Prior to this study, there was a general lack of knowledge regarding derelict fish traps in the Caribbean. No spatially explicit information existed regarding fishing effort, abundance and distribution of derelict traps, the rate at which active traps become derelict, or areas that are prone to dereliction. Furthermore, there was only limited information regarding the impacts of derelict traps on natural resources including ghost fishing. This research identified two groups of fishing communities in the region: commercial fishing that is most active in deeper waters (30 m and greater) and an unknown number of unlicensed subsistence and or commercial fishers that fish closer to shore in shallower waters (30 m and less). In the commercial fishery there are an estimated 6,500 active traps (fish and lobster combined). Of those traps, nearly 8% (514) were reported lost during the 2008-2010 period. Causes of loss/dereliction include: movement of the traps or loss of trap markers due to entanglement of lines by passing vessels; theft; severe weather events (storms, large ground swells); intentional disposal by fishermen; traps becoming caught on various bottom structures (natural substrates, wrecks, etc.); and human error.
Resumo:
Professionals who are responsible for coastal environmental and natural resource planning and management have a need to become conversant with new concepts designed to provide quantitative measures of the environmental benefits of natural resources. These amenities range from beaches to wetlands to clean water and other assets that normally are not bought and sold in everyday markets. At all levels of government — from federal agencies to townships and counties — decisionmakers are being asked to account for the costs and benefits of proposed actions. To non-specialists, the tools of professional economists are often poorly understood and sometimes inappropriate for the problem at hand. This handbook is intended to bridge this gap. The most widely used organizing tool for dealing with natural and environmental resource choices is benefit-cost analysis — it offers a convenient way to carefully identify and array, quantitatively if possible, the major costs, benefits, and consequences of a proposed policy or regulation. The major strength of benefit-cost analysis is not necessarily the predicted outcome, which depends upon assumptions and techniques, but the process itself, which forces an approach to decision-making that is based largely on rigorous and quantitative reasoning. However, a major shortfall of benefit-cost analysis has been the difficulty of quantifying both benefits and costs of actions that impact environmental assets not normally, nor even regularly, bought and sold in markets. Failure to account for these assets, to omit them from the benefit-cost equation, could seriously bias decisionmaking, often to the detriment of the environment. Economists and other social scientists have put a great deal of effort into addressing this shortcoming by developing techniques to quantify these non-market benefits. The major focus of this handbook is on introducing and illustrating concepts of environmental valuation, among them Travel Cost models and Contingent Valuation. These concepts, combined with advances in natural sciences that allow us to better understand how changes in the natural environment influence human behavior, aim to address some of the more serious shortcomings in the application of economic analysis to natural resource and environmental management and policy analysis. Because the handbook is intended for non-economists, it addresses basic concepts of economic value such as willingness-to-pay and other tools often used in decision making such as costeffectiveness analysis, economic impact analysis, and sustainable development. A number of regionally oriented case studies are included to illustrate the practical application of these concepts and techniques.
Resumo:
Professionals who are responsible for coastal environmental and natural resource planning and management have a need to become conversant with new concepts designed to provide quantitative measures of the environmental benefits of natural resources. These amenities range from beaches to wetlands to clean water and other assets that normally are not bought and sold in everyday markets. At all levels of government — from federal agencies to townships and counties — decisionmakers are being asked to account for the costs and benefits of proposed actions. To non-specialists, the tools of professional economists are often poorly understood and sometimes inappropriate for the problem at hand. This handbook is intended to bridge this gap. The most widely used organizing tool for dealing with natural and environmental resource choices is benefit-cost analysis — it offers a convenient way to carefully identify and array, quantitatively if possible, the major costs, benefits, and consequences of a proposed policy or regulation. The major strength of benefit-cost analysis is not necessarily the predicted outcome, which depends upon assumptions and techniques, but the process itself, which forces an approach to decision-making that is based largely on rigorous and quantitative reasoning. However, a major shortfall of benefit-cost analysis has been the difficulty of quantifying both benefits and costs of actions that impact environmental assets not normally, nor even regularly, bought and sold in markets. Failure to account for these assets, to omit them from the benefit-cost equation, could seriously bias decisionmaking, often to the detriment of the environment. Economists and other social scientists have put a great deal of effort into addressing this shortcoming by developing techniques to quantify these non-market benefits. The major focus of this handbook is on introducing and illustrating concepts of environmental valuation, among them Travel Cost models and Contingent Valuation. These concepts, combined with advances in natural sciences that allow us to better understand how changes in the natural environment influence human behavior, aim to address some of the more serious shortcomings in the application of economic analysis to natural resource and environmental management and policy analysis. Because the handbook is intended for non-economists, it addresses basic concepts of economic value such as willingness-to-pay and other tools often used in decision making such as costeffectiveness analysis, economic impact analysis, and sustainable development. A number of regionally oriented case studies are included to illustrate the practical application of these concepts and techniques.
Resumo:
The summer flounder, Paralichthys dentatus, is overexploited and is currently at very low levels of abundance. This is reflected in the compressed age structure of the population and the low catches in both commercial and recreational fisheries. Declining habitat quantity and quality may be contributing to these declines, however we lack a thorough understanding of the role of habitats in the population dynamics of this species. Stock structure is unresolved and current interpretations, depending on the technique and study area, suggest that there may be two or three spawning populations. If so, these stocks may have differing habitat requirements. In response to this lack of knowledge, this document summarizes and synthesizes the available information on summer flounder habitat in all life history stages (eggs, larvae, juveniles and adults) and identifies areas where further research is needed. Several levels of investigation were conducted in order to produce this document. First, an extensive search for summer flounder habitat information was made, which included both the primary and gray literature as well as unanalyzed data. Second, state and federal fisheries biologists and resource managers in all states within the primary range of summer flounder (Massachusetts to Florida) were interviewed along with a number of fish ecologists and summer flounder experts from the academic and private sectors. Finally, information from all sources was analyzed and synthesized to form a coherent overview. This document first presents an overview of the economic importance and current status of summer flounder (Chapter 1). It then summarizes our present state of knowledge of summer flounder distribution, life history patterns and stock identification (Chapter 2). This is followed by a synopsis of habitat requirements during each life history stage. For convenience, this is presented by general habitat as offshore eggs (Chapter 3), offshore larvae (Chapter 4), estuarine larvae (Chapter 5), estuarine juveniles (Chapter 6), offshore juveniles (Chapter 7) and estuarine and offshore adults (Chapter 8). In several instances, previously undigested data sets are analyzed to provide more detailed information, especially for estuarine juveniles. The information is then discussed in terms of its relevance to resource managers (Chapter 9).