462 resultados para Coral-dwelling Fishes
Resumo:
Limited information currently exists on the recovery periods of bleached corals as well as the spatial extent, causative factors, and the overall impact of bleaching on coral reef ecosystems. During October, 2005, widespread coral bleaching was observed within Buck Island Reef National Monument (BUIS) St. Croix, USVI. The bleaching event was preceded by 10 weeks of higher than average water temperatures (28.9-30.1°C). Random transects (100 square meters) over hard bottom habitats (N=94) revealed that approximately 51% of live coral cover was bleached. Nineteen of 23 coral species within 16 genera and two hydrocoral species exhibited signs of bleaching; species-specific bleaching patterns were variable throughout the study area. Coral cover for Montastraea annularisand species of the genus Agariciawere the most affected, while other species exhibited variability to bleaching. Although a weak but significant negative relationship (r2=0.10, P=0.0220) was observed, bleaching was evident at all depths (1.5-28 m). Bleaching was spatially autocorrelated (P=0.001) and hot-spot analysis identified a cluster of high bleaching stations northeast of Buck Island. Bleaching was significantly reduced within all depth zones and habitat types upon subsequent monitoring during April (15%) and October (3%) 2006.
Resumo:
Coral ( Porites astreoides ) from eight sites in southwest Puerto Rico were analyzed for approximately 150 chemical contaminants, to provide a preliminary characterization of environmental contamination in the corals, and assess the relationships between chemical contamination in corals and adjacent sediments. Overall, the concentration of PAHs (polycyclic aromatic hydrocarbons) and PCBs (polychlorinated biphenyls) detected in the limited number of coral samples collected were comparable to concentrations found in sediments. However, the concentration of a chemical contaminant (e.g., PAHs) in the corals at a site was often different from what was found in adjacent sediments. The level of PCBs and DDT (dichlorodiphenyltrichloroethane) in the corals appeared higher just outside of Guanica Bay, and there was some evidence of a downstream concentration gradient for these two contaminant classes. The trace elements copper and zinc were frequently detected in Porites astreoides , and the concentrations were usually comparable to those found in adjacent sediments. Chromium was an exception in that it was not detected in any of the coral samples analyzed, although it was detected in all of the sediment samples.
Resumo:
This report presents an initial characterization of chemical contamination in coral tissues (Porites astreoides) from southwest Puerto Rico. It is the second technical report from a project to characterize chemical contaminants and assess linkages between contamination and coral condition. The first report quantified chemical contaminants in sediments from southwest Puerto Rico. This document summarizes the analysis of nearly 150 chemical contaminants in coral tissues. Although only eight coral samples were collected, some observations can be made on the correlations between observed tissue and sediment contaminant concentrations. The concentrations of polycyclic aromatic hydrocarbons (PAHs), typically associated with petroleum spills and the combustion of fossil fuels, and polychlorinated biphenyls (PCBs) in the coral tissues were comparable to concentrations found in adjacent sediments. However, the concentration of a chemical contaminant (e.g., PAHs) in the coral tissues at a particular site was not a good predictor of what was in the adjacent sediments. In addition, the types of PAHs found in the coral tissues were somewhat different (higher ratios of alkylated PAHs) than in sediments. The levels of PCBs and DDT in coral tissues appeared higher just outside of Guanica Bay, and there was evidence of a downstream concentration gradient for these two contaminant classes. The trace elements copper, zinc and nickel were frequently detected in coral tissues, and the concentration in the corals was usually comparable to that found in adjacent sediments. Chromium was an exception in that it was not detected in any of the coral tissues analyzed. Additional work is needed to assess how spatial patterns in chemical contamination affect coral condition, abundance and distribution.
Resumo:
Shallow coral reefs in the IndoPacific contain the highest diversity of marine organisms in the world, with approximately 1500 described species of fish, over 500 species of scleractinian corals, and an estimated 1-10 million organisms yet to be characterized (Reaka-Kudla et al. 1994). These centers of marine biodiversity are facing significant, multiple threats to reef community and habitat structure and function, resulting in local to wide-scale regional damage. Wilkinson (2004) characterized the major pressures as including (1) global climate change, (2) diseases, plagues and invasive species, (3) direct human pressures, (4) poor governance and lack of political will, and (5) international action or inaction. Signs that the natural plasticity of reef ecosystems has been exceeded in many areas from the effects of environmental (e.g., global climate change) and anthropogenic (e.g., land use, pollution) stressors is evidenced by the loss of 20% of the world’s coral reefs (Wilkinson 2004). Predictions are that another 24% (Wilkinson 2006) are under imminent risk of collapse and an additional 26% are under a longer term threat from reduced fitness, disease outbreaks, and increased mortality. These predictions indicate that the current list of approximately 30-40 fatal diseases impacting corals will expand as will the frequency and extent of “coral bleaching” (Waddell 2005; Wilkinson 2004). Disease and corallivore outbreaks, in combination with multiple, concomitant human disturbances are compromising corals and coral reef communities to the point where their ability to rebound from natural disturbances is being lost.
Resumo:
The Flower Garden Banks National Marine Sanctuary (FGBNMS) is located in the northwestern Gulf of Mexico approximately 180 km south of Galveston, Texas. The sanctuary’s distance from shore combined with its depth (the coral caps reach to within approximately 17 m of the surface) result in limited exposure of this coral reef ecosystem to natural and human-induced impacts compared to other coral reefs of the western Atlantic. In spite of this, the sanctuary still confronts serious impacts including hurricanes events, recent outbreaks of coral disease, an increase in the frequency of coral bleaching and the massive Diadema antillarum die-off during the mid-1980s. Anthropogenic impacts include large vessel anchoring, commercial and recreational fishing, recreational scuba diving, and oil and gas related activities. The FGBNMS was designated in 1992 to help protect against some of these impacts. Basic monitoring and research efforts have been conducted on the banks since the 1970s. Early on, these efforts focused primarily on describing the benthic communities (corals, sponges) and providing qualitative characterizations of the fish community. Subsequently, more quantitative work has been conducted; however, it has been limited in spatial scope. To complement these efforts, the current study addresses the following two goals put forth by sanctuary management: 1) to develop a sampling design for monitoring benthic fish communities across the coral caps; and 2) to obtain a spatial and quantitative characterization of those communities and their associated habitats.
Resumo:
Few studies have quantified the extent of nocturnal cross-habitat movements for fish, or the influence of habitat adjacencies on nutrient flows and trophodynamics. To investigate the patterns of nocturnal cross-boundary movements of fish and quantify trophic connectivity, fish were sampled at night with gillnets set along the boundaries between dominant habitat types (coral reef/seagrass and mangrove/seagrass) in southwestern Puerto Rico. Fish movement across adjacent boundary patches were equivalent at both coral reefs and mangroves. Prey biomass transfer was greater from seagrass to coral reefs (0.016 kg/km) and from mangroves to seagrass (0.006 kg/km) but not statistically significant, indicating a balance of flow between adjacent habitats. Pelagic species (jacks, sharks, rays) accounted for 37% of prey biomass transport at coral reef/seagrass and 46% at mangrove/seagrass while grunts and snappers accounted for 7% and 15%, respectively. This study indicated that coral reefs and mangroves serve as a feeding area for a wide range of multi-habitat fish species. Crabs were the most frequent prey item in fish leaving coral reefs while molluscs were observed slightly more frequently than crabs in fish entering coral reefs. For most prey types, biomass exported from mangroves was greater than biomass imported. The information on direction of fish movement together with analysis of prey data provided strong evidence of ecological linkages between distinct adjacent habitat types and highlighted the need for greater inclusion of a mosaic of multiple habitats when attempting to understand ecosystem function including the spatial transfer of energy across the seascape.
Resumo:
The intent of this field mission was to continue ongoing efforts: (1) to spatially characterize and monitor the distribution, abundance and size of reef fishes, and the abundance of macroinvertebrates (conch, Diatema, lobster) within and around the waters of the Virgin Islands National Park (VIIS) and newly established Virgin Islands Coral Reef National Monument (VICR), (2) to correlate this information to in-situ data collected on associated habitat parameters, (3) to use this information to establish the knowledge base necessary for enacting management decisions in a spatial setting and (4) to establish the efficacy of those management decisions. An additional focus this year, was to evaluate a new habitat data collection method for RHA sites (MSR and some Coral Bay sites). There are concerns that the cylinder habitat data are not reflective of the fish transect habitat. To address this, we collected habitat data at 5x4 m increments along the transect in addition to data collected using the cylinder method. We are currently assessing the potential differences between these methods and preliminary results indicate that the average difference of coral cover estimates between the two methods was 4.1% (range 0-11%) based on 16 sample sites. In addition, Erinn Muller, a Nancy Foster Fellowship recipient, collaborated with the Biogeography Branch to examine the spatial distribution of coral diseases, to provide baseline information on disease prevalence over varying spatial scales and to establish spatial distributions of coral diseases around St. John.
Resumo:
Brevetoxin uptake was analyzed in 2 common planktivorous fish that are likely foodweb vectors for dolphin mortality events associated with brevetoxin-producing red tides. Fish were exposed to brevetoxin-producing Karenia brevis for 10 h under conditions previously reported to produce optimal uptake of toxin in blood after oral exposure. Striped mullet Mugil cephalus were exposed to a low dose of brevetoxin, and uptake and depuration by specific organs were evaluated over a 2 mo period. Atlantic menhaden Brevoortia tyrannus specimens were used to characterize a higher brevetoxin dose uptake into whole body components and evaluate depuration over 1 mo. We found a high uptake of toxin by menhaden, with a body to water ratio of 57 after a 10 h exposure and a slow elimination with a half life (t1/2) of 24 d. Elimination occurred rapidly from the intestine (t1/2 < 1 wk) and muscle (t1/2 ≈ 1 wk) compartments and redistributed to liver which continued to accumulate body stores of toxin for 4 wk. The accumulation and elimination characteristics of the vectoring capacity of these 2 fish species are interpreted in relation to data from the Florida Panhandle dolphin mortality event of 2004. We show that due to slow elimination rate of brevetoxin in planktivorous fish, brevetoxin-related dolphin mortality events may occur without evidence of a concurrent harmful algal bloom event.
Resumo:
In the past decade, increased awareness regarding the declining condition of U.S. coral reefs has prompted various actions by governmental and non-governmental organizations. Presidential Executive Order 13089 created the U.S. Coral Reef Task Force (USCRTF) in 1998 to coordinate federal and state/territorial activities (Clinton, 1998), and the Coral Reef Conservation Act of 2000 provided Congressional funding for activities to conserve these important ecosystems, including mapping, monitoring and assessment projects carried out through the support of NOAA’s CRCP. Numerous collaborations forged among federal agencies and state, local, non-governmental, academic and private partners now support a variety of monitoring activities. This report shares the results of many of these monitoring activities, relying heavily on quantitative, spatially-explicit data that has been collected in the recent past and comparisons with historical data where possible. The success of this effort can be attributed to the dedication of over 270 report contributors who comprised the expert writing teams in the jurisdictions and contributed to the National Level Activities and National Summary chapters. The scope and content of this report are the result of their dedication to this considerable collaborative effort. Ultimately, the goal of this report is to answer the difficult but vital question: what is the condition of U.S. coral reef ecosystems? The report attempts to base a response on the best available science emerging from coral reef ecosystem monitoring programs in 15 jurisdictions across the country. However, few monitoring programs have been in place for longer than a decade, and many have been initiated only within the past two to five years. A few jurisdictions are just beginning to implement monitoring programs and face challenges stemming from a lack of basic habitat maps and other ecosystem data in addition to adequate training, capacity building, and technical support. There is also a general paucity of historical data describing the condition of ecosystem resources before major human impacts occurred, which limits any attempt to present the current conditions within an historical context and contributes to the phenomenon of shifting baselines (Jackson, 1997; Jackson et al., 2001; Pandolfi et al., 2005).
Resumo:
Several microorganisms have been identified as pathogenic agents responsible for various outbreaks of coral disease. Little has been learned about the exclusivity of a pathogen to given disease signs. Most pathogens have only been implicated within a subset of corals, leaving gaps in our knowledge of the host range and geographic extent of a given pathogen. PCR-based assays provide a rapid and inexpensive route for detection of pathogens. Pathogen-specific 16S rDNA primer sets were designed to target four identified coral pathogens: Aurantimonas coralicida, Serratia marcescens, Vibrio shilonii, and Vibrio coralliilyticus. Assays detected the presence of targets at concentrations of less than one cell per microliter. The assay was applied to 142 coral samples from the Florida Keys, Puerto Rico, and U.S. Virgin Islands as an in situ specificity test. Assays displayed a high-level of specificity, seemingly limited only by the resolution of the 16S rDNA.
Resumo:
This chapter covers coral reef areas under the jurisdiction of the USA in the Wider Caribbean: Florida; Flower Garden Banks; Puerto Rico; U.S. Virgin Islands; and Navassa. The following information is condensed from six chapters of The State of Coral Reef Ecosystems of the United States and Pacific Freely Associated States: 2008. Access to the full text of this comprehensive report is available at: http://ccma.nos.noaa.gov/stateofthereefs.
Resumo:
An activity book for children highlighting coral reef issues. The book includes coral reef information, fun facts, drawings to color, connect the dots, find a word, images, matching, etc. Target audience is K-6th graders.
Resumo:
This poster presents information on the status and trends of coral reef ecosystems in St. Croix, US Virgin Islands (USVI). Data were collected by NOAA’s Center for Coastal Monitoring and Assessment Biogeography Branch (CCMA-BB) from 2001-2006 at 1,275 random locations in and around Buck Island Reef National Monument (BIRNM). The main objective was to quantify changes in fish species and assemblage diversity, abundance, biomass and size structure; to provide spatially explicit information on the distribution of key species or groups of species; and to compare community structure inside versus outside of BIRNM.
Resumo:
The intent of this field mission was to continue ongoing efforts: (1) to spatially characterize and monitor the distribution, abundance and size of both reef fishes and conch within and around the waters of the Virgin Islands National Park (VIIS) and newly established Virgin Islands Coral Reef National Monument (VICR), (2) to correlate this information to in-situ data collected on associated habitat parameters, (3) to use this information to establish the knowledge base necessary for enacting management decisions in a spatial setting and to establish the efficacy of those management decisions. This work is supported by the National Park Service and NOAA’s Coral Reef Conservation Program’s Caribbean Coral Reef Ecosystem Monitoring Project. The report highlights the successes of this mission.
Resumo:
On July 12-15, 2008, researchers and resource managers met in Jupiter, Florida to discuss and review the state of knowledge regarding mesophotic coral ecosystems, develop a working definition for these ecosystems, identify critical resource management information needs, and develop a Mesophotic Coral Ecosystems Research Strategy to assist the U.S. National Oceanic and Atmospheric Administration (NOAA) and other agencies and institutions in their research prioritization and strategic planning for mesophotic coral ecosystems. Workshop participants included representatives from international, Federal, and state governments; academia; and nongovernmental organizations. The Mesophotic Coral Ecosystems Workshop was hosted by the Perry Institute for Marine Science (PIMS) and organized by NOAA and the U.S. Geological Survey (USGS). The workshop goals, objectives, schedule, and products were governed by a Steering Committee consisting of members from NOAA (National Centers for Coastal Ocean Science’s Center for Sponsored Coastal Ocean Research, the Office of Ocean Exploration and Research’s NOAA Undersea Research Program, and the National Marine Fisheries Service), USGS, PIMS, the Caribbean Coral Reef Institute, and the Bishop Museum.