515 resultados para TROPICAL BAY
Resumo:
ELEFAN 0, ELEFAN I and ELEFAN II were used to estimate vital statistics of Nemipterus japonicus from length-frequency data sampled along the coast of Bangladesh. The parameters L and K were estimated at 24.5 cm and 0.94 year super(-1). The values of M and F were found to be 1.81 and 1.58 year super(-1), respectively. The fish recruit to the fishery during May-June and September-October.
Resumo:
The diet composition of fish caught in San Miguel Bay, Philippines, in April and May 1993 was studied. The diets of tiger-tooth croaker (Otolithes ruber), commerson's anchovy (Stolephorus commersonii); and the Indian anchovy (Stolephorus indicus) consisted mainly of zooplankton, primarily crustaceans. The stomach content of orangefin ponyfish (Leiognathus bindus) was found to consist mostly of detritus and unidentified materials. Daily rations estimated were: 1.90 g day super(1) for O. ruber of 17.3 g mean body weight (BW), 0.078 g day super(1) for S. commersonii) of 3.8 g mean BW, 0.062 g day super(1) for S. indicus of 3.9 g mean BW and 0.56 g day super(1) for L. bindus of 7.7 g mean BW.
Resumo:
The gut contents of Sardina pilchardus specimens captured in Izmir Bay were examined in order to determine their feeding regimes. Of the 365 stomachs examined, 321 (87.95%) contained food and 44 (12.05%) were empty. Analysis of gut contents verified that S. pilchardus feeds on zooplankton. The most important group in the diet of S. pilchardus was copepods (79.79%). Decapod crustacean larvae (8.17%) and bivalves (3.18%) were second and third, respectively, in order of importance. The application of analysis of variance to monthly data of numerical percentage, weight percentage, frequency of occurrence and index of relative importance indicated that there was no significant difference between months. Oncaea media was the most dominant species for six months of the year. Euterpina acutifrons, Centropages typicus, Calanoida, Oncaea sp. and Corycaeus sp. were the most dominant for March, April, May, September, October and December.
Resumo:
An examination is made of the literature on seed stock and live fish transport in the tropics. ASFA and ICLARM library and professional staff collections were used for the search.
Resumo:
To assess the impact of California sea lions (Zalophus californianus) on salmon fisheries in the Monterey Bay region of California, the percentages of hooked fish taken by sea lions in commercial and recreational salmon fisheries were estimated from 1997 to 1999. Onboard surveys of sea lion interactions with the commercial and recreational f isheries and dockside interviews with fishermen after their return to port were conducted in the ports of Santa Cruz, Moss Landing, and Monterey. Approximately 1745 hours of onboard and dockside surveys were conducted—924 hours in the commercial fishery and 821 hours in the recreational fishery (commercial passenger fishing vessels [CPFVs] and personal skiffs combined). Adult male California sea lions were responsible for 98.4% of the observed depredations of hooked salmon in the commercial and recreational fisheries in Monterey Bay. Mean annual percentages of hooked salmon taken by sea lions ranged from 8.5% to 28.6% in the commercial fishery, 2.2% to 18.36% in the CPFVs, and 4.0% to 17.5% in the personal skiff fishery. Depredation levels in the commercial and recreational salmon fisheries were greatest in 1998—likely a result of the large El Niño Southern Oscillation (ENSO) event that occurred from 1997 to 1998 that reduced natural prey resources. Commercial fishermen lost an estimated $18,031−$60,570 of gear and $225,833−$498,076 worth of salmon as a result of interactions with sea lions. Approximately 1.4−6.2% of the available salmon population was removed from the system as a result of sea lion interactions with the fishery. Assessing the impact of a growing sea lion population on fisheries stocks is difficult, but may be necessary for effective fisheries management.
Resumo:
Fishing is widely recognized to have profound effects on estuarine and marine ecosystems (Hammer and Jansson, 1993; Dayton et al., 1995). Intense commercial and recreational harvest of valuable species can result in population collapses of target and nontarget species (Botsford et al., 1997; Pauly et al., 1998; Collie et al. 2000; Jackson et al., 2001). Fishing gear, such as trawls and dredges, that are dragged over the seafloor inflict damage to the benthic habitat (Dayton et al., 1995; Engel and Kvitek, 1995; Jennings and Kaiser, 1998; Watling and Norse, 1998). As the growing human population, over-capitalization, and increasing government subsidies of fishing place increasing pressures on marine resources (Myers, 1997), a clear understanding of the mechanisms by which fishing affects coastal systems is required to craft sustainable fisheries management.
Resumo:
Recent research demonstrated significantly lower growth and survival of Bristol Bay sockeye salmon (Oncorhynchus nerka) during odd-numbered years of their second or third years at sea (1975, 1977, etc.), a trend that was opposite that of Asian pink salmon (O. gorbuscha) abundance. Here we evaluated seasonal growth trends of Kvichak and Egegik river sockeye salmon (Bristol Bay stocks) during even- and odd-numbered years at sea by measuring scale circuli increments within each g rowth zone of each major salmon age group between 1955 and 2000. First year scale growth was not significantly different between odd- and even-numbered years, but peak growth of age-2 smolts was significantly higher than age-1. smolts. Total second and third year scale growth of salmon was significantly lower during odd- than during even-numbered years. However, reduced scale growth in odd-numbered years began after peak growth in spring and continued through summer and fall even though most pink salmon had left the high seas by late July (10−18% growth reduction in odd vs. even years). The alternating odd and even year growth pattern was consistent before and after the 1977 ocean reg ime shift. During 1977−2000, when salmon abundance was relatively great, sockeye salmon growth was high during specific seasons compared with that during 1955−1976, that is to say, immediately after entry to Bristol Bay, after peak growth in the first year, during the middle of the second growing season, and during spring of the third season. Growth after the spring peak in the third year at sea was relatively low during 1977−2000. We hypothesize that high consumption rates of prey by pink salmon during spring through mid-July of odd-numbered years, coupled with declining zooplankton biomass during summer and potentially cyclic abundances of squid and other prey, contributed to reduced prey availability and therefore reduced growth of Bristol Bay sockeye salmon during late spring through fall of odd-numbered years.
Resumo:
Inter and intra-annual variation in year-class strength was analyzed for San Francisco Bay Pacific herring (Clupea pallasi) by using otoliths of juveniles. Juvenile herring were collected from March through June in 1999 and 2000 and otoliths from subsamples of these collections were aged by daily otolith increment analysis. The composition of the year classes in 1999 and 2000 were determined by back-calculating the birth date distribution for surviving juvenile herring. In 2000, 729% more juveniles were captured than in 1999, even though an estimated 12% fewer eggs were spawned in 2000. Spawning-date distributions show that survival for the 2000 year class was exceptionally good for a short (approximately 1 month) period of spawning, resulting in a large abundance of juvenile recruits. Analysis of age at size shows that growth rate increased significantly as the spawning season progressed both in 1999 and 2000. However, only in 2000 were the bulk of surviving juveniles a product of the fast growth period. In the two years examined, year-class strength was not predicted by the estimated number of eggs spawned, but rather appeared to depend on survival of eggs or larvae (or both) through the juvenile stage. Fast growth through the larval stage may have little effect on year-class strength if mortality during the egg stage is high and few larvae are available.
Resumo:
Through the mid 1990’s, the bait purse-seine fishery for Atlantic menhaden, Brevoortia tyrannus, in the Virginia portion of Chesapeake Bay was essentially undocumented. Beginning in 1995, captains of Virginia bait vessels maintained deck logs of their daily fishing activities; concurrently, we sampled the bait landings for size and age composition of the catch. Herein, we summarize 15 years (1995–2009) of data from the deck logbooks, including information on total bait landings by purse seine, proportion of fishing to nonfishing days, proportion of purse-seine sets assisted by spotter pilots, nominal fishing effort, median catches, and temporal and areal trends in catch. Age and size composition of the catch are described, as well as vessel and gear characteristics and disposition of the catch.
Resumo:
The bay scallop, Argopecten irradians, supported a small commercial fishery in Florida from the late 1920’s through the 1940’s; peak landings were in 1946 (214,366 lbs of meats), but it currently supports one of the most popular and family-oriented fisheries along the west coast of Florida. The primary habitat of the short-lived (18 months) bay scallop is seagrass beds. Peak spawning occurs in the fall. Human population growth and coastal development that caused habitat changes and reduced water quality probably are the main causes of a large decline in the scallop’s abundance. Bay scallop restoration efforts in bays where they have become scarce have centered on releasing pediveligers and juveniles into grass beds and holding scallops in cages where they would
Resumo:
There is no evidence that a commercial bay scallop fishery exists anywhere in the northwestern Gulf of Mexico. No data concerning scallop abundance or distribution was found for Alabama, Mississippi, and Louisiana. Texas is the only state west of Florida where bay scallop populations have been documented. These records come from a variety of literature sources and the fisheries-independent data collected by Texas Parks and Wildlife Department (1982–2005). Although common in the diet of prehistoric peoples living on the Texas coast, recent (last ~50 years) bay scallop population densities tend to be low and exhibit “boom–bust” cycles of about 10–15 years. The Laguna Madre, is the only place on the Texas coast where scallops are relatively abundant; this is likely due to extensive seagrasses cover (>70%) and salinities that typically exceed 35 psu. The lack of bay scallop fishery development in the northwestern Gulf of Mexico is probably due to variable but generally low densities of the species combined with a limited amount of suitable (i.e. seagrass
Resumo:
The bay scallop, Argopecten irradians amplicostatus, has been present in the coastal lagoons of northeastern Mexico from Laguna Madre, Tamaulipas, to Tuxpan, Veracruz. But now, usually scarce in all lagoons, the scallop is harvested sporadically by fishermen who wade and collect them by hand and with tongs. Some are eaten by the fishermen and some are sold. They bring the fishermen about 60 pesos (5.88US$)/kg. Only the adductor muscles are eaten; they are prepared in cocktails and in ceviche. Little evidence exists that this scallop species was used in the early Mexican cultures.
Resumo:
Zostera marina is a member of a widely distributed genus of seagrasses, all commonly called eelgrass. The reported distribution of eelgrass along the east coast of the United States is from Maine to North Carolina. Eelgrass inhabits a variety of coastal habitats, due in part to its ability to tolerate a wide range of environmental parameters. Eelgrass meadows provide habitat, nurseries, and feeding grounds for a number of commercially and ecologically important species, including the bay scallop, Argopecten irradians. In the early 1930’s, a marine event, termed the “wasting disease,” was responsible for catastrophic declines in eelgrass beds of the coastal waters of North America and Europe, with the virtual elimination of Z. marina meadows in the Atlantic basin. Following eelgrass declines, disastrous losses were documented for bay scallop populations, evidence of the importance of eelgrass in supporting healthy scallop stocks. Today, increased turbidity arising from point and non-point source nutrient loading and sediment runoff are the primary threats to eelgrass along the Atlantic coast and, along with recruitment limitation, are likely reasons for the lack of recovery by eelgrass to pre-1930’s levels. Eelgrass is at a historical low for most of the western Atlantic with uncertain prospects for systematic improvement. However, of all the North American seagrasses, eelgrass has a growth rate and strategy that makes it especially conducive to restoration and several states maintain ongoing mapping, monitoring, and restoration programs to enhance and improve this critical resource. The lack of eelgrass recovery in some areas, coupled with increasing anthropogenic impacts to seagrasses over the last century and heavy fishing pressure on scallops which naturally have erratic annual quantities, all point to a fishery with profound challenges for survival.
Resumo:
In recent decades, hatchery-growout culture of oysters, Crassostrea virginica, and northern quahogs, Mercenaria mercenaria, has been commercially successful in Atlantic United States and oysters in Atlantic Canada. Culturists have not had success, as yet, with northern bay scallops, Argopecten irradians irradians. Large mortalities occur during the culture process, mainly because the scallops are relatively delicate and some die when handled. In addition, too little edible meat, i.e. the adductor muscle, is produced for the culture operation to be profitable. However, three companies, one in Massachusetts, one in New Brunswick, and one on Prince Edward Island, Canada, have discovered that they can produce bay scallops successfully by harvesting them when partially-to fully-grown and selling them whole. In restaurants, the scallops are cooked and served with all their meats (adductor muscles and rims) and also with the shells, which have been genetically-bred for bright colors. The scallop seed are produced in hatcheries and then grown in lantern or pearl nets and cages to market size. Thus far, production has been relatively small, just beyond the pilot-scale, until a larger demand develops for this product.
Resumo:
This is a broad historical overview of the bay scallop, Argopecten irradians, fishery on the East and Gulf Coasts of North America (Fig. 1). For a little over a century, from about the mid 1870’s to the mid 1980’s, bay scallops supported large commercial fisheries mainly in the U.S. states of Massachusetts, New York, and North Carolina and on smaller scales in the states in between and in western Florida. In these states, the annual harvests and dollar value of bay scallops were far smaller than those of the other important commercial mollusks, the eastern oysters, Crassostrea virginica, and northern quahogs, Mercenaria mercenaria, but they were higher than those of softshell clams, Mya arenaria (Table 1). The fishery had considerable economic importance in the states’ coastal towns, because bay scallops are a high-value product and the fishery was active during the winter months when the economies in most towns were otherwise slow. The scallops also had cultural importance as a special food, an ornament owing to its pretty shell design, and an interesting biological component of