361 resultados para Chernye Yary River
Resumo:
The objective of this monitoring project was to determine the baseline condition for a 960-m long stream reach and its associated streamside zone, which terminates at the confluence with the Deschutes River. This stream reach had been damaged heavily in the February 1996 flood and had also received many years of overuse by livestock grazing. The monitoring project was conducted in July 1997 just after installation of riparian exclosure fencing. Future resurvey of the study area will allow determination of progress made in ecological recovery.
Resumo:
A study of possible causes for extensive mortality of oysters in the Upper Chesapeake Bay was taken on by year-round monitoring of conditions during a two-year period.
Resumo:
The transition between freshwater and marine environments is associated with high mortality for juvenile anadromous salmonids, yet little is known about this critical period in many large rivers. To address this deficiency, we investigated the estuarine ecology of juvenile salmonids and their associated fish assemblage in open-water habitats of the lower Columbia River estuary during spring of 2007–10. For coho (Oncorhynchus kisutch), sockeye (O. nerka), chum (O. keta), and yearling (age 1.0) Chinook (O. tshawytscha) salmon, and steelhead (O. mykiss), we observed a consistent seasonal pattern characterized by extremely low abundances in mid-April, maximum abundances in May, and near absence by late June. Subyearling (age 0.0) Chinook salmon were most abundant in late June. Although we observed interannual variation in the presence, abundance, and size of juvenile salmonids, no single year was exceptional across all species-and-age classes. We estimated that >90% of juvenile Chinook and coho salmon and steelhead were of hatchery origin, a rate higher than previously reported. In contrast to juvenile salmonids, the abundance and composition of the greater estuarine fish assemblage, of which juvenile salmon were minor members, were extremely variable and likely responding to dynamic physical conditions in the estuary. Comparisons with studies conducted 3 decades earlier suggest striking changes in the estuarine fish assemblage—changes that have unknown but potentially important consequences for juvenile salmon in the Columbia River estuary.
Resumo:
Salt River Bay National Historical Park and Ecological Preserve (hereafter, SARI or the park) was created in 1992 to preserve, protect, and interpret nationally significant natural, historical, and cultural resources (United States Congress 1992). The diverse ecosystem within it includes a large mangrove forest, a submarine canyon, coral reefs, seagrass beds, coastal forests, and many other natural and developed landscape elements. These ecosystem components are, in turn, utilized by a great diversity of flora and fauna. A comprehensive spatial inventory of these ecosystems is required for successful management. To meet this need, the National Oceanic and Atmospheric Administration (NOAA) Biogeography Program, in consultation with the National Park Service (NPS) and the Government of the Virgin Islands Department of Planning and Natural Resources (VIDPNR), conducted an ecological characterization. The characterization consists of three complementary components: a text report, digital habitat maps, and a collection of historical aerial photographs. This ecological characterization provides managers with a suite of tools that, when coupled with the excellent pre-existing body of work on SARI resources, enables improved research and monitoring activities within the park (see Appendix F for a list of data products).
Resumo:
The overall goal of this assessment was to evaluate the effects of nutrient-source reductions that may be implemented in the Mississippi River Basin (MRB) to reduce the problem of low oxygen conditions (hypoxia) in the nearshore Gulf of Mexico. Such source reductions would affect the quality of surface waters—streams, rivers, and reservoirs—in the drainage basin itself, as well as nearshore Gulf waters. The task group’s work was divided into addressing the effects of nutrient-source reductions on: (1) surface waters in the MRB and (2) hypoxia in the Gulf of Mexico.
Resumo:
Ths report addresses the following two questions: 1) What are the loads (flux) of nutrients transported from the Mississippi-Atchafalaya River Basin to the Gulf of Mexico, and where do they come from within the basin? 2) What is the relative importance of specific human activities, such as agriculture, point-source discharges, and atmospheric deposition in contributing to these loads? These questions were addressed by first estimating the flux of nutrients from the Mississippi-Atchafalaya River Basin and about 50 interior basins in the Mississippi River system using measured historical streamflow and water quality data. Annual nutrient inputs and outputs to each basin were estimated using data from the National Agricultural Statistics Service, National Atmospheric Deposition Program, and point-source data provided by the USEPA. Next, a nitrogen mass balance was developed using agricultural statistics, estimates of nutrient cycling in agricultural systems, and a geographic information system. Finally, multiple regression models were developed to estimate the relative contributions of the major input sources to the flux of nitrogen and phosphorus to the Gulf of Mexico.
Resumo:
This memorandum has four parts. The first is a review and partial synthesis of Phase 1 and Phase 2 Reports by Dr. Ernest Estevez of the Mote Marine Laboratory to the Board of County Commissioners of Sarasota County, Florida. The review and synthesis emphasizes identification of the most important aspects of the structure of the Myakka system in terms of forcing functions, biological components, and major energy flows. In this context, the dominant primary producers, dominant fish species and food habits, and major environmental variables were of articular interest. A major focus of the review and synthesis was on the river zonations provided in the report and based on salinity and various biological indicators. The second part of this memorandum is a review of a draft report by Mote Marine Laboratory on evaluation of potential water quality impacts on the Myakka River from proposed activities in the watershed. This Memorandum's third part is a review of resource-management related ecosystem models in the context of possible future models of the Myakka River Ecosystem. The final part of this memorandum is proposed future work as an extension of the initial reports.