39 resultados para winter cereals
Resumo:
Despite its recreational and commercial importance, the movement patterns and spawning habitats of winter flounder (Pseudopleuronectes americanus) in the Gulf of Maine are poorly understood. To address these uncertainties, 72 adult winter flounder (27–48 cm) were fitted with acoustic transmitters and tracked by passive telemetry in the southern Gulf of Maine between 2007 and 2009. Two sympatric contingents of adult winter flounder were observed, which exhibited divergent spawning migrations. One contingent remained in coastal waters during the spawning season, while a smaller contingent of winter flounder was observed migrating to estuarine habitats. Estuarine residence times were highly variable, and ranged from 2 to 91 days (mean=28 days). Flounder were nearly absent from the estuary during the fall and winter months and were most abundant in the estuary from late spring to early summer. The observed seasonal movements appeared to be strongly related to water temperature. This is the first study to investigate the seasonal distribution, migration, and spawning behavior of adult winter flounder in the Gulf of Maine by using passive acoustic telemetry. This approach offered valuable insight into the life history of this species in nearshore and estuarine habitats and improved the information available for the conservation and management of this species.
Resumo:
King mackerel (Scomberomorus cavalla) are ecologically and economically important scombrids that inhabit U.S. waters of the Gulf of Mexico (GOM) and Atlantic Ocean (Atlantic). Separate migratory groups, or stocks, migrate from eastern GOM and southeastern U.S. Atlantic to south Florida waters where the stocks mix during winter. Currently, all winter landings from a management-defined south Florida mixing zone are attributed to the GOM stock. In this study, the stock composition of winter landings across three south Florida sampling zones was estimated by using stock-specific otolith morphological variables and Fourier harmonics. The mean accuracies of the jackknifed classifications from stepwise linear discriminant function analysis of otolith shape variables ranged from 66−76% for sex-specific models. Estimates of the contribution of the Atlantic stock to winter landings, derived from maximum likelihood stock mixing models, indicated the contribution was highest off southeastern Florida (as high as 82.8% for females in winter 2001−02) and lowest off southwestern Florida (as low as 14.5% for females in winter 2002−03). Overall, results provided evidence that the Atlantic stock contributes a certain, and perhaps a significant (i.e., ≥50%), percentage of landings taken in the management-defined winter mixing zone off south Florida, and the practice of assigning all winter mixing zone landings to the GOM stock should
Resumo:
From December to February in most years from 1967 to 2007, observers counted gray whales, Eschrichtius robustus, from shore sites south of Carmel in central California. In addition to gray whales, other cetacean species were also recorded. These observations were summarized and compared among survey platforms and to ocean conditions. Eleven cetacean species were identified including eight odontocete species (killer whale, Orcinus orca; Pacific white-sided dolphin, Lagenorhynchus obliquidens; common dolphin, Delphinus spp.; bottlenose dolphin, Tursiops truncatus, northern right whale dolphin, Lissodelphis borealis; Risso’s dolphin, Grampus griseus; Dall’s porpoise, Phocoenoides dalli; and harbor porpoise, Phocoena phocoena) and three mysticete species (humpback whale, Megaptera novaeangliae; minke whale, Balaenoptera acutorostrata; and blue whale, Balaenoptera musculus). As expected, the detection of certain species among survey platforms (shore-based census watches, 25-power “Big Eye” binocular watches, and aerial surveys) was limited by species surfacing behavior and/or bathymetric preference. Comparisons among the shore-based census efforts showed a significant difference in sightings rates from 1967–84 (n = 14, mean = 0.11, SD = 0.11) to 1985–2007 (n = 11, mean = 1.48, SD = 0.47; t-Test: p < 0.001, df = 23). The warm period observed during the 1990’s may partially explain the increase in sighting rates and diversity of species observed at the census site compared to the much cooler temperatures of the 1970’s.
Resumo:
•Major Outcomes from the 2009 PICES Annual Meeting: A Note from the Chairman (pp. 1-3, 8) •PICES Science – 2009 (pp. 4-8) •2009 PICES Awards (pp. 9-10) •New Chairmen in PICES (pp. 11-15) •PICES Interns (p. 15) •The State of the Western North Pacific in the First Half of 2009 (pp. 16-17, 27) •The State of the Northeast Pacific in 2009 (pp. 18-19) •The Bering Sea: Current Status and Recent Events (pp. 20-21) •2009 PICES Summer School on “Satellite Oceanography for the Earth Environment” (pp. 22-25) •2009 International Conference on “Marine Bioinvasions” (pp. 26-27) •A New PICES Working Group Holds Workshop and Meeting in Jeju Island (pp. 28-29) •The Second Marine Ecosystem Model Inter-comparison Workshop (pp. 30-32) •ICES/PICES/UNCOVER Symposium on “Rebuilding Depleted Fish Stocks – Biology, Ecology, Social Science and Management Strategies” (pp. 33-35) •2009 North Pacific Synthesis Workshop (pp. 36-37) •2009 PICES Rapid Assessment Survey (pp. 38-40)
Resumo:
•2010 PICES Science: A Note from the Former Science Board Chairman (pp. 1-4) •2010 PICES Awards (pp. 5-7) •The First Year of FUTURE: A Progress Report (pp. 8-13) •New Chairmen in PICES (pp. 14-19) •Pacific Ocean Interior Carbon Data Synthesis, PACIFICA, in Progress (pp. 20-23) •2011 PICES Calendar (p. 23) •Ecosystems 2010: Global Progress on Ecosystem-based Fisheries Management (pp. 24-26) •PICES 2010 Rapid Assessment Survey (pp. 27-29) •PICES Workshop on “An Introduction to Rapid Assessment Survey Methodologies for Application in Developing Countries” (pp. 30-31) •The State of the Western North Pacific in the First Half of 2010 (pp. 32-34) •PICES Interns (p. 34) •The State of the Bering Sea in 2010 (pp. 35-37) •The State of the Northeast Pacific in 2010 (pp. 38-40)
Resumo:
•2011 PICES Science: A Note from the Science Board Chairman (pp. 1-6) •2011 PICES Awards (pp. 7-9) •Beyond the Terrible Disaster of the Great East Japan Earthquake (pp. 10-12) •A New Era of PICES-ICES Scientific Cooperation (p. 13) •New PICES Jellyfish Working Group Formed (pp. 14-15) •PICES Working Group on North Pacific Climate Variability (pp. 16-18) •Final U.S. GLOBEC Symposium and Celebration (pp. 19-25) •2011 PICES Rapid Assessment Survey (pp. 26-29) •Introduction to Rapid Assessment Survey Methodologies for Detecting Non-indigenous Marine Species (pp. 30-31) •The 7th International Conference on Marine Bioinvasions (pp. 32-33) •NOWPAP/PICES/WESTPAC Training Course on Remote Sensing Data Analysis (pp. 34-36) •PICES-2011 Workshop on “Trends in Marine Contaminants and their Effects in a Changing Ocean” (pp. 37-39) •The State of the Western North Pacific in the First Half of 2011 (pp. 40-42) •Yeosu Symposium theme sessions (p. 42) •The Bering Sea: Current Status and Recent Events (pp. 43-44) •News of the Northeast Pacific Ocean (pp. 45-47) •Recent and Upcoming PICES Publications (p. 47) •New leadership for the PICES Fishery Science Committee (p. 48)
Resumo:
•2012 PICES Science: A Note from the Science Board Chairman (pp. 1-6) ◾2012 PICES Awards (pp. 7-9) ◾GLOBEC/PICES/ICES ECOFOR Workshop (pp. 10-15) ◾ICES/PICES Symposium on “Forage Fish Interactions” (pp. 16-18) ◾The Yeosu Declaration, the Yeosu Declaration Forum and the Yeosu Project (pp. 19-23) ◾2013 PICES Calendar (p. 23) ◾Why Do We Need Human Dimensions for the FUTURE Program? (pp. 24-25) ◾New PICES MAFF-Sponsored Project on “Marine Ecosystem Health and Human Well-Being” (pp. 26-28) ◾The Bering Sea: Current Status and Recent Trends (pp. 29-31) ◾Continuing Cool in the Northeast Pacific Ocean (pp. 32, 35) ◾The State of the Western North Pacific in the First Half of 2012 (pp. 33-35) ◾New Leadership in PICES (pp. 36-39)
Resumo:
EXTRACT (SEE PDF FOR FULL ABSTRACT): The latest in a series of unusual winters affected the western United States during 1991-92. This report is primarily concerned with the 6 to 8 coolest months, with some consideration of the adjacent summer months. ... Much of the winter was characterized by "split flow" west of North America. As it approached the West Coast, the jet stream frequently diverged into a northern branch toward Panhandle Alaska and a second southern branch that dived south along the California coast and then eastward along the US-Mexican border. Repeatedly, storms approaching the West Coast were stretched north-to-south, losing their organization in the process.
Resumo:
Serial, cyclonic, mesoscale eddies arise just north of the Charleston Bump, a topographical rise on the continental slope and Blake Plateau, and characterize the U.S. outer shelf and upper slope in the region of the Charleston Gyre. This region was transected during the winters of 2000, 2001, and 2002, and hydrographic data and larval fishes were collected. The hydrodynamics of the cyclonic eddies of the Charleston Gyre shape the distribution of larval fishes by mixing larvae from the outer continental shelf and the Gulf Stream and entraining them into the eddy circulation at the peripheral margins, the wrap-around filaments. Over all years and transects (those that intercepted eddies and those that did not), chlorophyll a concentrations, zooplankton displacement volumes, and larval fish concentrations were positively correlated. Chlorophyll a concentrations were highest in filaments that wrapped around eddies, and zooplankton displacement volumes were highest in the continental shelf–Gulf Stream–frontal mix. Overall, the concentration of all larval fishes declined from inshore to offshore with highest concentrations occurring over the outer shelf. Collections produced larvae from 91 fish families representing continental shelf and oceanic species. The larvae of shelf-spawned fishes—Atlantic Menhaden Brevoortia tyrannus, Round Herring Etrumeus teres, Spot Leiostomus xanthurus, and Atlantic Croaker Micropogonias undulatus—were most concentrated over the outer shelf and in the continental shelf–Gulf Stream–frontal mix. The larvae of ocean-spawned fishes—lanternfishes, bristlemouths, and lightfishes—were more evenly dispersed in low concentrations across the outer shelf and upper slope, the highest typically in the Gulf Stream and Sargasso Sea, except for lightfishes that were highest in the continental shelf–Gulf Stream–frontal mix. Detrended correspondence analysis rendered groups of larval fishes that corresponded with a gradient between the continental shelf and Gulf Stream and Sargasso Sea. Eddies propagate northeastward with a residence time on the outer shelf and upper slope of ∼1 month, the same duration as the larval period of most fishes. The pelagic habitat afforded by eddies and fronts of the Charleston Gyre region can be exploited as nursery areas for feeding and growth of larval fishes within the southeastern Atlantic continental shelf ecosystem of the U.S. Eddies, and the nursery habitat they provide, translocate larvae northeastward.